Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1291 KiB  
Review
Collagen as a Biomaterial for Skin and Corneal Wound Healing
by Renáta Sklenářová, Naoufal Akla, Meagan Jade Latorre, Jitka Ulrichová and Jana Franková
J. Funct. Biomater. 2022, 13(4), 249; https://doi.org/10.3390/jfb13040249 - 16 Nov 2022
Cited by 29 | Viewed by 6534
Abstract
The cornea and the skin are two organs that form the outer barrier of the human body. When either is injured (e.g., from surgery, physical trauma, or chemical burns), wound healing is initiated to restore integrity. Many cells are activated during wound healing. [...] Read more.
The cornea and the skin are two organs that form the outer barrier of the human body. When either is injured (e.g., from surgery, physical trauma, or chemical burns), wound healing is initiated to restore integrity. Many cells are activated during wound healing. In particular, fibroblasts that are stimulated often transition into repair fibroblasts or myofibroblasts that synthesize extracellular matrix (ECM) components into the wound area. Control of wound ECM deposition is critical, as a disorganized ECM can block restoration of function. One of the most abundant structural proteins in the mammalian ECM is collagen. Collagen type I is the main component in connective tissues. It can be readily obtained and purified, and short analogs have also been developed for tissue engineering applications, including modulating the wound healing response. This review discusses the effect of several current collagen implants on the stimulation of corneal and skin wound healing. These range from collagen sponges and hydrogels to films and membranes. Full article
Show Figures

Graphical abstract

41 pages, 10287 KiB  
Review
Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses
by Michał Biały, Mariusz Hasiak and Amadeusz Łaszcz
J. Funct. Biomater. 2022, 13(4), 245; https://doi.org/10.3390/jfb13040245 - 16 Nov 2022
Cited by 12 | Viewed by 3552
Abstract
The continuous development of novel materials for biomedical applications is resulting in an increasingly better prognosis for patients. The application of more advanced materials relates to fewer complications and a desirable higher percentage of successful treatments. New, innovative materials being considered for biomedical [...] Read more.
The continuous development of novel materials for biomedical applications is resulting in an increasingly better prognosis for patients. The application of more advanced materials relates to fewer complications and a desirable higher percentage of successful treatments. New, innovative materials being considered for biomedical applications are metallic alloys with an amorphous internal structure called metallic glasses. They are currently in a dynamic phase of development both in terms of formulating new chemical compositions and testing their properties in terms of intended biocompatibility. This review article intends to synthesize the latest research results in the field of biocompatible metallic glasses to create a more coherent picture of these materials. It summarizes and discusses the most recent findings in the areas of mechanical properties, corrosion resistance, in vitro cellular studies, antibacterial properties, and in vivo animal studies. Results are collected mainly for the most popular metallic glasses manufactured as thin films, coatings, and in bulk form. Considered materials include alloys based on zirconium and titanium, as well as new promising ones based on magnesium, tantalum, and palladium. From the properties of the examined metallic glasses, possible areas of application and further research directions to fill existing gaps are proposed. Full article
(This article belongs to the Special Issue Biocompatibility of Functional Biomaterials)
Show Figures

Figure 1

20 pages, 8276 KiB  
Review
Regulating Macrophages through Immunomodulatory Biomaterials Is a Promising Strategy for Promoting Tendon-Bone Healing
by Haihan Gao, Liren Wang, Haocheng Jin, Zhiqi Lin, Ziyun Li, Yuhao Kang, Yangbao Lyu, Wenqian Dong, Yefeng Liu, Dingyi Shi, Jia Jiang and Jinzhong Zhao
J. Funct. Biomater. 2022, 13(4), 243; https://doi.org/10.3390/jfb13040243 - 15 Nov 2022
Cited by 11 | Viewed by 2521
Abstract
The tendon-to-bone interface is a special structure connecting the tendon and bone and is crucial for mechanical load transfer between dissimilar tissues. After an injury, fibrous scar tissues replace the native tendon-to-bone interface, creating a weak spot that needs to endure extra loading, [...] Read more.
The tendon-to-bone interface is a special structure connecting the tendon and bone and is crucial for mechanical load transfer between dissimilar tissues. After an injury, fibrous scar tissues replace the native tendon-to-bone interface, creating a weak spot that needs to endure extra loading, significantly decreasing the mechanical properties of the motor system. Macrophages play a critical role in tendon-bone healing and can be divided into various phenotypes, according to their inducing stimuli and function. During the early stages of tendon-bone healing, M1 macrophages are predominant, while during the later stages, M2 macrophages replace the M1 macrophages. The two macrophage phenotypes play a significant, yet distinct, role in tendon-bone healing. Growing evidence shows that regulating the macrophage phenotypes is able to promote tendon-bone healing. This review aims to summarize the impact of different macrophages on tendon-bone healing and the current immunomodulatory biomaterials for regulating macrophages, which are used to promote tendon-bone healing. Although macrophages are a promising target for tendon-bone healing, the challenges and limitations of macrophages in tendon-bone healing research are discussed, along with directions for further research. Full article
Show Figures

Figure 1

10 pages, 2368 KiB  
Article
Fracture and Fatigue of Dental Implants Fixtures and Abutments with a Novel Internal Connection Design: An In Vitro Pilot Study Comparing Three Different Dental Implant Systems
by Sung-Woon On, Sang-Min Yi, In-Young Park, Soo-Hwan Byun and Byoung-Eun Yang
J. Funct. Biomater. 2022, 13(4), 239; https://doi.org/10.3390/jfb13040239 - 14 Nov 2022
Cited by 3 | Viewed by 2208
Abstract
The aim of this study was to compare the mechanical behaviors of three dental implant fixtures with different abutment connection designs. Three implant systems were studied: the control (BLX implant), test group 1 (TORX++ implant), and test group 2 (IU implant). Three samples [...] Read more.
The aim of this study was to compare the mechanical behaviors of three dental implant fixtures with different abutment connection designs. Three implant systems were studied: the control (BLX implant), test group 1 (TORX++ implant), and test group 2 (IU implant). Three samples from each group were subjected to static compression to fracture tests to determine the maximum fracture load, and twelve samples were exposed to fatigue tests that measured how many cycles the implants could endure before deformation or fracture. Detailed images of the implant–abutment assemblies were obtained using micro-computed tomography imaging, and fractured or deformed areas were observed using a scanning electron microscope (SEM). The mean maximum breaking loads of 578.45 ± 42.46 N, 793.26 ± 57.43 N, and 862.30 ± 74.25 N were obtained for the BLX, TORX++, and IU implants, respectively. All samples in the three groups withstood 5 × 106 cycles at 50% of the nominal peak value, and different fracture points were observed. All abutment connection designs showed suitable mechanical properties for intraoral use. Microscopic differences in the fracture patterns may be due to the differences in the fixture design or abutment connection, and mechanical complications could be prevented by lowering the overload reaching the implant or preventing peri-implantitis. Full article
Show Figures

Figure 1

14 pages, 2892 KiB  
Article
Hydrothermal Synthesis of Fluorapatite Coatings over Titanium Implants for Enhanced Osseointegration—An In Vivo Study in the Rabbit
by Eduardo Santiago, Victor Martin, Bruno Colaço, Maria Helena Fernandes, Catarina Santos and Pedro S. Gomes
J. Funct. Biomater. 2022, 13(4), 241; https://doi.org/10.3390/jfb13040241 - 14 Nov 2022
Cited by 6 | Viewed by 1907
Abstract
This work aims at the development and characterization of fluorapatite coatings, innovatively prepared by the hydrothermal method, aiming for enhanced osseointegration of titanium implants. Fluoride-containing coatings were prepared and characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy—attenuated total reflectance, and X-ray [...] Read more.
This work aims at the development and characterization of fluorapatite coatings, innovatively prepared by the hydrothermal method, aiming for enhanced osseointegration of titanium implants. Fluoride-containing coatings were prepared and characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy—attenuated total reflectance, and X-ray photoelectron spectroscopy. The biological response was characterized by microtomographic evaluation and histomorphometric analysis upon orthotopic implantation in a translational rabbit experimental model. Physic-chemical analysis revealed the inclusion of fluoride in the apatite lattice with fluorapatite formation, associated with the presence of citrate species. The in vivo biological assessment of coated implants revealed an enhanced bone formation process—with increased bone-to-implant contact and bone volume. The attained enhancement of the osteogenic process may be attributable to the conjoined modulatory activity of selected fluoride and citrate levels within the produced coatings. In this regard, the production of fluorapatite coatings with citrate, through the hydrothermal method, entails a promising approach for enhanced osseointegration in implant dentistry and orthopedic applications. Full article
(This article belongs to the Special Issue Bone Regeneration and Repair Materials)
Show Figures

Figure 1

54 pages, 2086 KiB  
Review
Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering
by Adam D. McInnes, Michael A. J. Moser and Xiongbiao Chen
J. Funct. Biomater. 2022, 13(4), 240; https://doi.org/10.3390/jfb13040240 - 14 Nov 2022
Cited by 43 | Viewed by 8994
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells [...] Read more.
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions. Full article
Show Figures

Graphical abstract

15 pages, 2898 KiB  
Article
Morphology of Biomaterials Affect O-Glycosylation of HUVECs
by Xingyou Hu, Jiaoyue Sheng, Guoping Guan, Tongzhong Ju, David F. Smith and Lu Wang
J. Funct. Biomater. 2022, 13(4), 235; https://doi.org/10.3390/jfb13040235 - 11 Nov 2022
Cited by 1 | Viewed by 1472
Abstract
Biomaterials have been widely used as substitutes for diseased tissue in surgery and have gained great success and attention. At present, the biocompatibility of biomaterials such as PET woven fabrics is often evaluated both in vitro and in vivo. However, the current experimental [...] Read more.
Biomaterials have been widely used as substitutes for diseased tissue in surgery and have gained great success and attention. At present, the biocompatibility of biomaterials such as PET woven fabrics is often evaluated both in vitro and in vivo. However, the current experimental methods cannot reveal the relationship between material surfaces and cell adhesion, and few research works have focused on the mechanisms of how the surface morphology of biomaterials affects cell adhesion and proliferation. Thus, it is meaningful to find out how the altered surfaces could affect cell adhesion and growth. In this study, we employed Ar low-temperature plasma treatment technology to create nano-grooves on the warp yarn of PET woven fabrics and seeded human umbellar vein endothelial cells (HUVEC) on these fabrics. We then assessed the O-glycan and N-glycan profiles of the cells grown on different structures of the polyester woven fabrics. The result showed that the surface morphology of polyester woven fabrics could affect the O-glycan profile but not the N-glycan profile of cultured HUVEC. Taken together, the study describes the effects of the surface morphology of biomaterial on the biosynthesis of cellular glycans and may provide new insights into the design and manufacture of biomaterials used as blood vessels based on the expression profiles of O-glycans on cultured cells. Full article
Show Figures

Figure 1

18 pages, 4501 KiB  
Article
The Mineralization of Various 3D-Printed PCL Composites
by Artem Egorov, Bianca Riedel, Johannes Vinke, Hagen Schmal, Ralf Thomann, Yi Thomann and Michael Seidenstuecker
J. Funct. Biomater. 2022, 13(4), 238; https://doi.org/10.3390/jfb13040238 - 11 Nov 2022
Cited by 4 | Viewed by 1792
Abstract
In this project, different calcification methods for collagen and collagen coatings were compared in terms of their applicability for 3D printing and production of collagen-coated scaffolds. For this purpose, scaffolds were printed from polycaprolactone PCL using the EnvisionTec 3D Bioplotter and then coated [...] Read more.
In this project, different calcification methods for collagen and collagen coatings were compared in terms of their applicability for 3D printing and production of collagen-coated scaffolds. For this purpose, scaffolds were printed from polycaprolactone PCL using the EnvisionTec 3D Bioplotter and then coated with collagen. Four different coating methods were then applied: hydroxyapatite (HA) powder directly in the collagen coating, incubation in 10× SBF, coating with alkaline phosphatase (ALP), and coating with poly-L-aspartic acid. The results were compared by ESEM, µCT, TEM, and EDX. HA directly in the collagen solution resulted in a pH change and thus an increase in viscosity, leading to clumping on the scaffolds. As a function of incubation time in 10× SBF as well as in ALP, HA layer thickness increased, while no coating on the collagen layer was apparently observed with poly-L-aspartic acid. Only ultrathin sections and TEM with SuperEDX detected nano crystalline HA in the collagen layer. Exclusively the incubation in poly-L-aspartic acid led to HA crystals within the collagen coating compared to all other methods where the HA layers formed in different forms only at the collagen layer. Full article
(This article belongs to the Special Issue Biodegradable Polymers and Textiles)
Show Figures

Figure 1

27 pages, 3718 KiB  
Article
Escherichia coli Biofilm Formation, Motion and Protein Patterns on Hyaluronic Acid and Polydimethylsiloxane Depend on Surface Stiffness
by Annabelle Vigué, Dominique Vautier, Amad Kaytoue, Bernard Senger, Youri Arntz, Vincent Ball, Amine Ben Mlouka, Varvara Gribova, Samar Hajjar-Garreau, Julie Hardouin, Thierry Jouenne, Philippe Lavalle and Lydie Ploux
J. Funct. Biomater. 2022, 13(4), 237; https://doi.org/10.3390/jfb13040237 - 11 Nov 2022
Cited by 1 | Viewed by 2408
Abstract
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To [...] Read more.
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9–574 kPa) and HA (hyaluronic acid gels, 44 Pa–2 kPa) differing in their hydration. We showed that the softest HA inhibited Escherichia coli biofilm growth, while the stiffest PDMS activated it. The bacterial mechanical environment significantly regulated the MscS mechanosensitive channel in higher abundance on the least colonized HA-44Pa, while Type-1 pili (FimA) showed regulation in higher abundance on the most colonized PDMS-9kPa. Type-1 pili regulated the free motion (the capacity of bacteria to move far from their initial position) necessary for biofilm growth independent of the substrate surface stiffness. In contrast, the total length travelled by the bacteria (diffusion coefficient) varied positively with the surface stiffness but not with the biofilm growth. The softest, hydrated HA, the least colonized surface, revealed the least diffusive and the least free-moving bacteria. Finally, this shows that customizing the surface elasticity and hydration, together, is an efficient means of affecting the bacteria’s mobility and attachment to the surface and thus designing biomedical surfaces to prevent biofilm growth. Full article
Show Figures

Graphical abstract

16 pages, 2121 KiB  
Article
Long-Term Antimicrobial Performance of Textiles Coated with ZnO and TiO2 Nanoparticles in a Tropical Climate
by Varvara O. Veselova, Vladimir A. Plyuta, Andrei N. Kostrov, Darya N. Vtyurina, Vladimir O. Abramov, Anna V. Abramova, Yury I. Voitov, Darya A. Padiy, Vo Thi Hoai Thu, Le Thi Hue, Dinh Thi Thu Trang, Alexander E. Baranchikov, Inessa A. Khmel, Victor A. Nadtochenko and Vladimir K. Ivanov
J. Funct. Biomater. 2022, 13(4), 233; https://doi.org/10.3390/jfb13040233 - 9 Nov 2022
Cited by 6 | Viewed by 2620
Abstract
This paper reports the results of the large-scale field testing of composite materials with antibacterial properties in a tropical climate. The composite materials, based on a cotton fabric with a coating of metal oxide nanoparticles (TiO2 and/or ZnO), were produced using high-power [...] Read more.
This paper reports the results of the large-scale field testing of composite materials with antibacterial properties in a tropical climate. The composite materials, based on a cotton fabric with a coating of metal oxide nanoparticles (TiO2 and/or ZnO), were produced using high-power ultrasonic treatment. The antibacterial properties of the materials were studied in laboratory tests on solid and liquid nutrient media using bacteria of different taxonomic groups (Escherichia coli, Chromobacterium violaceum, Pseudomonas chlororaphis). On solid media, the coatings were able to achieve a >50% decrease in the number of bacteria. The field tests were carried out in a tropical climate, at the Climate test station “Hoa Lac” (Hanoi city, Vietnam). The composite materials demonstrated long-term antibacterial activity in the tropical climate: the number of microorganisms remained within the range of 1–3% in comparison with the control sample for the duration of the experiment (3 months). Ten of the microorganisms that most frequently occurred on the surface of the coated textiles were identified. The bacteria were harmless, while the fungi were pathogenic and contributed to fabric deterioration. Tensile strength deterioration was also studied, with the fabrics coated with metal oxides demonstrating a better preservation of their mechanical characteristics over time, (there was a 42% tensile strength decrease for the reference non-coated sample and a 21% decrease for the sample with a ZnO + CTAB coating). Full article
Show Figures

Figure 1

19 pages, 51046 KiB  
Article
TEGDMA-Functionalized Dicalcium Phosphate Dihydrate Resin-Based Composites Prevent Secondary Caries in an In Vitro Biofilm Model
by Andrei Cristian Ionescu, Sebastian Hahnel, Marina D. S. Chiari, Andreas König, Paolo Delvecchio, Roberto Ruggiero Braga, Vanessa Zambelli and Eugenio Brambilla
J. Funct. Biomater. 2022, 13(4), 232; https://doi.org/10.3390/jfb13040232 - 9 Nov 2022
Cited by 3 | Viewed by 1632
Abstract
This study evaluated the efficacy of experimental TEGDMA-functionalized dicalcium phosphate dihydrate (T-DCPD) filler-based resin-based composites (RBC) in preventing caries lesions around the restoration margins (secondary caries, SC). Standardized Class-II cavities were made in sound molars with the cervical margin in dentin. Cavities were [...] Read more.
This study evaluated the efficacy of experimental TEGDMA-functionalized dicalcium phosphate dihydrate (T-DCPD) filler-based resin-based composites (RBC) in preventing caries lesions around the restoration margins (secondary caries, SC). Standardized Class-II cavities were made in sound molars with the cervical margin in dentin. Cavities were filled with a commercial resin-modified glass-ionomer cement (RMGIC) or experimental RBCs containing a bisGMA-TEGDMA resin blend and one of the following inorganic fractions: 60 wt.% Ba glass (RBC-0); 40 wt.% Ba glass and 20 wt.% T-DCPD (RBC-20); or 20 wt.% Ba glass and 40 wt.% T-DCPD (RBC-40). An open-system bioreactor produced Streptococcus mutans biofilm-driven SC. Specimens were scanned using micro-CT to evaluate demineralization depths. Scanning electron microscopy and energy-dispersive X-ray spectroscopy characterized the specimen surfaces, and antimicrobial activity, buffering effect, and ion uptake by the biofilms were also evaluated. ANOVA and Tukey’s tests were applied at p < 0.05. RBC-0 and RBC-20 showed SC development in dentin, while RBC-40 and RMGIC significantly reduced the lesion depth at the restoration margin (p < 0.0001). Initial enamel demineralization could be observed only around the RBC-0 and RBC-20 restorations. Direct antibiofilm activity can explain SC reduction by RMGIC, whereas a buffering effect on the acidogenicity of biofilm can explain the behavior of RBC-40. Experimental RBC with CaP-releasing functionalized T-DCPD filler could prevent SC with the same efficacy as F-releasing materials. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

19 pages, 4391 KiB  
Article
3D-Braided Poly-ε-Caprolactone-Based Scaffolds for Ligament Tissue Engineering
by Caroline Emonts, David Wienen, Benedict Bauer, Akram Idrissi and Thomas Gries
J. Funct. Biomater. 2022, 13(4), 230; https://doi.org/10.3390/jfb13040230 - 8 Nov 2022
Cited by 3 | Viewed by 2187
Abstract
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee. Due to its limited intrinsical healing potential and vascularization, injuries of the ACL do not heal satisfactorily, and surgical intervention is usually required. The limitations of existing reconstructive [...] Read more.
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee. Due to its limited intrinsical healing potential and vascularization, injuries of the ACL do not heal satisfactorily, and surgical intervention is usually required. The limitations of existing reconstructive grafts and autologous transplants have prompted interest in tissue-engineered solutions. A tissue engineering scaffold for ACL reconstruction must be able to mimic the mechanical properties of the native ligament, provide sufficient porosity to promote cell growth of the neoligament tissue, and be biodegradable. This study investigates long-term biodegradable poly-ε-caprolactone (PCL)-based scaffolds for ACL replacement using the 3D hexagonal braiding technique. The scaffolds were characterized mechanically as well as morphologically. All scaffolds, regardless of their braid geometry, achieved the maximum tensile load of the native ACL. The diameter of all scaffolds was lower than that of the native ligament, making the scaffolds implantable with established surgical methods. The 3D hexagonal braiding technique offers a high degree of geometrical freedom and, thus, the possibility to develop novel scaffold architectures. Based on the findings of this study, the 3D-braided PCL-based scaffolds studied were found to be a promising construct for tissue engineering of the anterior cruciate ligament. Full article
(This article belongs to the Special Issue Biomimetic Biomaterials-Based Scaffolds for Tissue Engineering)
Show Figures

Figure 1

19 pages, 3222 KiB  
Article
Biomass-Derived Plant Extracts in Macromolecular Chitosan Matrices as a Green Coating for PLA Films
by Lidija Fras Zemljič, Tjaša Kraševac Glaser, Olivija Plohl, Ivan Anžel, Vida Šimat, Martina Čagalj, Eva Mežnar, Valentina Malin, Meta Sterniša and Sonja Smole Možina
J. Funct. Biomater. 2022, 13(4), 228; https://doi.org/10.3390/jfb13040228 - 7 Nov 2022
Cited by 5 | Viewed by 2281
Abstract
Due to the growing problem of food and packaging waste, environmental awareness, and customer requirements for food safety, there is a great need for the development of innovative and functional packaging. Among these developments, the concept of active packaging is at the forefront. [...] Read more.
Due to the growing problem of food and packaging waste, environmental awareness, and customer requirements for food safety, there is a great need for the development of innovative and functional packaging. Among these developments, the concept of active packaging is at the forefront. The shortcoming in this area is that there is still a lack of multifunctional concepts, as well as green approaches. Therefore, this work focuses on the development of active chemical substances of natural origin applied as a coating on polylactic acid (PLA) films. Biopolymer chitosan and plant extracts rich in phenolic compounds (blackberry leaves—Rubus fruticosus, needles of prickly juniper—Juniperus oxycedrus) obtained from plant biomass from Southeastern Europe were selected in this work. In order to increase the effectiveness of individual substances and to introduce multifunctionality, they were combined in the form of different colloidal structural formulations. The plant extracts were embedded in chitosan biopolymer particles and dispersed in a macromolecular chitosan solution. In addition, a two-layer coating, the first of a macromolecular chitosan solution, and the second of a dispersion of the embedded extracts in chitosan particles, was applied to the PLA films as a novel approach. The success of the coatings was monitored by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and the wettability was evaluated by contact angle measurements. Scanning electron microscopy SEM tracked the morphology and homogeneity of the coating. Antioxidation was studied by DPPH and ABTS spectrophotometric tests, and microbiological analysis of the films was performed according to the ISO 22196 Standard. Desorption of the coating from the PLA was monitored by reducing the elemental composition of the films themselves. The successful functionalization of PLA was demonstrated, while the XPS and ATR-FTIR analyses clearly showed the peaks of elemental composition of the extracts and chitosan on the PLA surface. Moreover, in all cases, the contact angle of the bilayer coatings decreased by more than 35–60% and contributed to the anti-fogging properties. The desorption experiments, due to decrease in the concentration of the specific typical element (nitrogen), indicated some migration of substances from the PLA’s surface. The newly developed films also exhibited antioxidant properties, with antioxidant ABTS efficiencies ranging from 83.5 to 100% and a quite high inhibition of Gram-positive Staphylococcus aureus bacteria, averaging over 95%. The current functionalization of PLA simultaneously confers antifogging, antioxidant, and antimicrobial properties and drives the development of a biodegradable and environmentally friendly composite material using green chemistry principles. Full article
Show Figures

Figure 1

16 pages, 4620 KiB  
Article
Shape Fidelity Evaluation of Alginate-Based Hydrogels through Extrusion-Based Bioprinting
by Mikail Temirel, Sajjad Rahmani Dabbagh and Savas Tasoglu
J. Funct. Biomater. 2022, 13(4), 225; https://doi.org/10.3390/jfb13040225 - 7 Nov 2022
Cited by 12 | Viewed by 3282
Abstract
Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the [...] Read more.
Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the 3D-bioprinted structure, i.e., the collapse of filament (bioink) due to gravity and/or spreading of the bioink owing to the low viscosity, ultimately complicating the fabrication of multi-layered designs that can maintain the desired pore structure. While low viscosity is required to ensure a continuous flow of material (without clogging), a bioink should be viscous enough to retain its shape post-printing, highlighting the importance of bioink properties optimization. Here, two quantitative analyses are performed to evaluate shape fidelity. First, the filament collapse deformation is evaluated by printing different concentrations of alginate and its crosslinker (calcium chloride) by a co-axial nozzle over a platform to observe the overhanging deformation over time at two different ambient temperatures. In addition, a mathematical model is developed to estimate Young’s modulus and filament collapse over time. Second, the printability of alginate is improved by optimizing gelatin concentrations and analyzing the pore size area. In addition, the biocompatibility of proposed bioinks is evaluated with a cell viability test. The proposed bioink (3% w/v gelatin in 4% alginate) yielded a 98% normalized pore number (high shape fidelity) while maintaining >90% cell viability five days after being bioprinted. Integration of quantitative analysis/simulations and 3D printing facilitate the determination of the optimum composition and concentration of different elements of a bioink to prevent filament collapse or bioink spreading (post-printing), ultimately resulting in high shape fidelity (i.e., retaining the shape) and printing quality. Full article
Show Figures

Figure 1

32 pages, 1874 KiB  
Review
State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications
by Sijia Li, Manlin Qi, Qijing Yang, Fangyu Shi, Chengyu Liu, Juanrui Du, Yue Sun, Chunyan Li and Biao Dong
J. Funct. Biomater. 2022, 13(4), 227; https://doi.org/10.3390/jfb13040227 - 7 Nov 2022
Cited by 2 | Viewed by 2305
Abstract
Sulfate radicals (SO4·) play important biological roles in biomedical and environmental engineering, such as antimicrobial, antitumor, and disinfection. Compared with other common free radicals, it has the advantages of a longer half-life and higher oxidation potential, which could bring unexpected [...] Read more.
Sulfate radicals (SO4·) play important biological roles in biomedical and environmental engineering, such as antimicrobial, antitumor, and disinfection. Compared with other common free radicals, it has the advantages of a longer half-life and higher oxidation potential, which could bring unexpected effects. These properties have prompted researchers to make great contributions to biology and environmental engineering by exploiting their properties. Peroxymonosulfate (PMS) and peroxydisulfate (PDS) are the main raw materials for SO4· formation. Due to the remarkable progress in nanotechnology, a large number of nanomaterials have been explored that can efficiently activate PMS/PDS, which have been used to generate SO4· for biological applications. Based on the superior properties and application potential of SO4·, it is of great significance to review its chemical mechanism, biological effect, and application field. Therefore, in this review, we summarize the latest design of nanomaterials that can effectually activate PMS/PDS to create SO4·, including metal-based nanomaterials, metal-free nanomaterials, and nanocomposites. Furthermore, we discuss the underlying mechanism of the activation of PMS/PDS using these nanomaterials and the application of SO4· in the fields of environmental remediation and biomedicine, liberating the application potential of SO4·. Finally, this review provides the existing problems and prospects of nanomaterials being used to generate SO4· in the future, providing new ideas and possibilities for the development of biomedicine and environmental remediation. Full article
Show Figures

Figure 1

12 pages, 2492 KiB  
Article
Effect on Cellular Vitality In Vitro of Novel APRF-Chlorhexidine Treated Membranes
by Tasho Gavrailov, Ivan Chenchev, Maria Gevezova, Milena Draganova and Victoria Sarafian
J. Funct. Biomater. 2022, 13(4), 226; https://doi.org/10.3390/jfb13040226 - 7 Nov 2022
Cited by 1 | Viewed by 1617
Abstract
Introduction: Chlorhexidine (CHX) has been used for some time in clinical practice as a local antiseptic agent with excellent efficacy. The combination of CHX with APRF (Advanced-platelet rich fibrin) membrane has the potential to stimulate tissue regeneration and to provide a bactericidal effect. [...] Read more.
Introduction: Chlorhexidine (CHX) has been used for some time in clinical practice as a local antiseptic agent with excellent efficacy. The combination of CHX with APRF (Advanced-platelet rich fibrin) membrane has the potential to stimulate tissue regeneration and to provide a bactericidal effect. We hypothesize that this may reduce the rate of infections development and protect cell viability. Aim: The aim of this study was two-fold—to create a stable APRF membrane treated with different concentrations of CHX (0.01% and 0.02%) and to monitor its effect on the viability of PDL cells in vitro. This benefits the introduction of a new protocol for APRF membrane production -CHX-PRF and enriches the available evidence on the effect of this antiseptic agent on PDL (Periodontal ligament) cells. Materials and methods: APRF membranes were prepared by the addition of two concentrations (0.01% and 0.02%) of CHX. Membranes without the antiseptic were also prepared and used as control samples. PDL cells were cultivated on the membranes for 72 h. Cell number and vitality were examined by fluorescent cell viability assays. Results: Our results demonstrated that a concentration of 0.01% CHX allowed the production of a stable APRF membrane. This concentration slightly reduced the viability of PDL cells to 96.7%, but significantly decreased the average number of cells attached to the membrane—149 ± 16.5 cells/field compared to controls −336 ± 26.9 cells/field. APRF-CHX 0.02% membranes were unstable, indicating a dose-dependent cytotoxic effect of CHX. Conclusions: The introduced novel protocol leads to the production of a new type of APRF membrane—CHX-PRF. The incorporation of an antiseptic into the APRF membrane can improve its bactericidal activity and might serve as an important step for the prevention of postoperative infections. Full article
Show Figures

Figure 1

14 pages, 4627 KiB  
Article
The Effect of Amino Sugars on the Composition and Metabolism of a Microcosm Biofilm and the Cariogenic Potential against Teeth and Dental Materials
by Lin Zeng, Alejandro Riveros Walker, Patricia dos Santos Calderon, Xinyi Xia, Fan Ren and Josephine F. Esquivel-Upshaw
J. Funct. Biomater. 2022, 13(4), 223; https://doi.org/10.3390/jfb13040223 - 6 Nov 2022
Cited by 3 | Viewed by 1812
Abstract
Amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) are abundant sources of carbon and nitrogen in the oral cavity. The aim of this study was to investigate the effects of GlcNAc metabolism on the genomics and biochemistry of a saliva-derived microbial community, and on [...] Read more.
Amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) are abundant sources of carbon and nitrogen in the oral cavity. The aim of this study was to investigate the effects of GlcNAc metabolism on the genomics and biochemistry of a saliva-derived microbial community, and on the surface integrity of human teeth and restorative surfaces. Pooled cell-containing saliva (CCS) was used to establish a microcosm biofilm in vitro in a biofilm medium (BM) containing 5 different carbohydrates. The microbial composition of each biofilm was analyzed by 16S rRNA amplicon sequencing, and the concentrations of eight organic acids were determined for selected sugars by targeted metabolomics. Meanwhile, extracted human teeth and polished titanium and ceramic disks were submerged in BM supplemented with 1% of glucose or GlcNAc, inoculated with CCS and Streptococcus mutans UA159, and incubated for 30 days. To mimic the effects of other microbial byproducts, the specimens were immersed in 10 mM hydrogen peroxide and 10 mM ammonium hydroxide for 30 days. The surface of each specimen was evaluated by profilometry for roughness (Ra) and imaged by scanning electron microscopy. The pH of the biofilm supernatant was significantly higher for the medium containing GlcNAc (p < 0.0001), and was higher in samples containing teeth than the two restorative disks for media containing the same sugar. For both teeth and titanium specimens, the samples treated with glucose-biofilm presented higher roughness values (Ra) than those with GlcNAc-biofilm and every other group. SEM images of the teeth and titanium disks largely supported the profilometry results, with glucose-biofilm samples demonstrating the largest deviation from the reference. For ceramic disks, slightly higher Ra values were obtained for the ammonia group. These findings provide the first direct evidence to support the ability of amino sugars to significantly reduce the cariogenic potential of oral biofilms by altering their biochemistry and bacterial composition. Additionally, amino sugar metabolism appears to be less detrimental to teeth and restorative surfaces than glucose metabolism. Full article
Show Figures

Figure 1

16 pages, 16099 KiB  
Article
AMPK/mTOR Pathway Is Involved in Autophagy Induced by Magnesium-Incorporated TiO2 Surface to Promote BMSC Osteogenic Differentiation
by Guifang Wang, Jiaxin Luo, Yuqin Qiao, Dongdong Zhang, Yulan Liu, Wenjie Zhang, Xuanyong Liu and Xinquan Jiang
J. Funct. Biomater. 2022, 13(4), 221; https://doi.org/10.3390/jfb13040221 - 5 Nov 2022
Cited by 6 | Viewed by 2072
Abstract
Magnesium has been extensively utilized to modify titanium implant surfaces based on its important function in promoting osteogenic differentiation. Autophagy has been proven to play a vital role in bone metabolism. Whether there is an association between autophagy and magnesium in promoting osteogenic [...] Read more.
Magnesium has been extensively utilized to modify titanium implant surfaces based on its important function in promoting osteogenic differentiation. Autophagy has been proven to play a vital role in bone metabolism. Whether there is an association between autophagy and magnesium in promoting osteogenic differentiation remains unclear. In the present study, we focused on investigating the role of magnesium ions in early osteogenic activity and the underlying mechanism related to autophagy. Different concentrations of magnesium were embedded in micro-structured titanium surface layers using the micro-arc oxidation (MAO) technique. The incorporation of magnesium benefited cell adhesion, spreading, and viability; attenuated intracellular ATP concentrations and p-mTOR levels; and upregulated p-AMPK levels. This indicates the vital role of the ATP-related AMPK/mTOR signaling pathway in the autophagy process associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) induced by magnesium modification on titanium surfaces. The enhanced osteogenic differentiation and improved cellular autophagy activity of BMSCs in their extraction medium further confirmed the function of magnesium ions. The results of the present study advance our understanding of the mechanism by which magnesium regulates BMSC osteogenic differentiation through autophagy regulation. Moreover, endowing implants with the ability to activate autophagy may be a promising strategy for enhancing osseointegration in the translational medicine field in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Figure 1

19 pages, 6854 KiB  
Article
A Novel Hybrid Membrane for Urinary Conduit Substitutes Based on Small Intestinal Submucosa Coupled with Two Synthetic Polymers
by Martina Casarin, Martina Todesco, Deborah Sandrin, Filippo Romanato, Andrea Bagno, Alessandro Morlacco and Fabrizio Dal Moro
J. Funct. Biomater. 2022, 13(4), 222; https://doi.org/10.3390/jfb13040222 - 5 Nov 2022
Cited by 6 | Viewed by 2506
Abstract
Among the urinary tract’s malignancies, bladder cancer is the most frequent one: it is at the tenth position of most common cancers worldwide. Currently, the gold standard therapy consists of radical cystectomy, which results in the need to create a urinary diversion using [...] Read more.
Among the urinary tract’s malignancies, bladder cancer is the most frequent one: it is at the tenth position of most common cancers worldwide. Currently, the gold standard therapy consists of radical cystectomy, which results in the need to create a urinary diversion using a bowel segment from the patient. Nevertheless, due to several complications associated with bowel resection and anastomosis, which significantly affect patient quality of life, it is becoming extremely important to find an alternative solution. In our recent work, we proposed the decellularized porcine small intestinal submucosa (SIS) as a candidate material for urinary conduit substitution. In the present study, we create SIS-based hybrid membranes that are obtained by coupling decellularized SIS with two commercially available polycarbonate urethanes (Chronoflex AR and Chronoflex AR-LT) to improve SIS mechanical resistance and impermeability. We evaluated the hybrid membranes by means of immunofluorescence, two-photon microscopy, FTIR analysis, and mechanical and cytocompatibility tests. The realization of hybrid membranes did not deteriorate SIS composition, but the presence of polymers ameliorates the mechanical behavior of the hybrid constructs. Moreover, the cytocompatibility tests demonstrated a significant increase in cell growth compared to decellularized SIS alone. In light of the present results, the hybrid membrane-based urinary conduit can be a suitable candidate to realize a urinary diversion in place of an autologous intestinal segment. Further efforts will be performed in order to create a cylindrical-shaped hybrid membrane and to study its hydraulic behavior. Full article
(This article belongs to the Special Issue Biocompatibility of Functional Biomaterials)
Show Figures

Graphical abstract

15 pages, 2814 KiB  
Article
Carbon Nanoparticles Extracted from Date Palm Fronds for Fluorescence Bioimaging: In Vitro Study
by Shaik Muhammad U. G. Mohiuddin, Abdu Saeed, Ahmed Alshahrie, Adnan Memić, Fadwa Aljoud, Shittu Abdullahi, Hussam A. Organji and Numan Salah
J. Funct. Biomater. 2022, 13(4), 218; https://doi.org/10.3390/jfb13040218 - 4 Nov 2022
Cited by 3 | Viewed by 1873
Abstract
Numerous studies have been reported on single- and multicolored highly fluorescent carbon nanoparticles (FCNPs) originating from various sources and their potential applications in bioimaging. Herein, multicolored biocompatible carbon nanoparticles (CNPs) unsheathed from date palm fronds were studied. The extracted CNPs were characterized via [...] Read more.
Numerous studies have been reported on single- and multicolored highly fluorescent carbon nanoparticles (FCNPs) originating from various sources and their potential applications in bioimaging. Herein, multicolored biocompatible carbon nanoparticles (CNPs) unsheathed from date palm fronds were studied. The extracted CNPs were characterized via several microscopic and spectroscopic techniques. The results revealed that the CNPs were crystalline graphitic and hydrophilic in nature with sizes ranging from 4 to 20 nm. The unsheathed CNPs showed exemplary photoluminescent (PL) properties. They also emitted bright blue colors when exposed to ultraviolet (UV) light. Furthermore, in vitro cellular uptake and cell viability in the presence of CNPs were also investigated. The cell viability of human colon cancer (HCT-116) and breast adenocarcinoma (MCF-7) cell lines with aqueous CNPs at different concentrations was assessed by a cell metabolic activity assay (MTT) for 24 and 48 h incubations. The results were combined to generate dose-response curves for the CNPs and evaluate the severity of their toxicity. The CNPs showed adequate fluorescence with high cell viability for in vitro cell imaging. Under the laser-scanning confocal microscope, the CNPs with HCT-116 and MCF-7 cell lines showed multicolor fluorescence emissions, including blue, green, and red colors when excited at 405, 458, and 561 nm, respectively. These results prove that unsheathed CNPs from date palm fronds can be used in diverse biomedical applications because of their low cytotoxicity, adequate fluorescence, eco-friendly nature, and cheap production. Full article
(This article belongs to the Special Issue Green Biosynthesis of Nanomaterials for Biomedical Applications)
Show Figures

Graphical abstract

33 pages, 6028 KiB  
Review
MOFs and MOF-Derived Materials for Antibacterial Application
by Xin Zhang, Feng Peng and Donghui Wang
J. Funct. Biomater. 2022, 13(4), 215; https://doi.org/10.3390/jfb13040215 - 3 Nov 2022
Cited by 53 | Viewed by 5766
Abstract
Bacterial infections pose a serious threat to people’s health. Efforts are being made to develop antibacterial agents that can inhibit bacterial growth, prevent biofilm formation, and kill bacteria. In recent years, materials based on metal organic frameworks (MOFs) have attracted significant attention for [...] Read more.
Bacterial infections pose a serious threat to people’s health. Efforts are being made to develop antibacterial agents that can inhibit bacterial growth, prevent biofilm formation, and kill bacteria. In recent years, materials based on metal organic frameworks (MOFs) have attracted significant attention for various antibacterial applications due to their high specific surface area, high enzyme-like activity, and continuous release of metal ions. This paper reviews the recent progress of MOFs as antibacterial agents, focusing on preparation methods, fundamental antibacterial mechanisms, and strategies to enhance their antibacterial effects. Finally, several prospects related to MOFs for antibacterial application are proposed, aiming to provide possible research directions in this field. Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in China)
Show Figures

Graphical abstract

18 pages, 3813 KiB  
Article
Polyzwitterionic Coating of Porous Adsorbents for Therapeutic Apheresis
by Vladislav Semak, Tanja Eichhorn, René Weiss and Viktoria Weber
J. Funct. Biomater. 2022, 13(4), 216; https://doi.org/10.3390/jfb13040216 - 3 Nov 2022
Cited by 2 | Viewed by 2315
Abstract
Adsorbents for whole blood apheresis need to be highly blood compatible to minimize the activation of blood cells on the biomaterial surface. Here, we developed blood-compatible matrices by surface modification with polyzwitterionic polysulfobetainic and polycarboxybetainic coatings. Photoreactive zwitterionic terpolymers were synthesized by free-radical [...] Read more.
Adsorbents for whole blood apheresis need to be highly blood compatible to minimize the activation of blood cells on the biomaterial surface. Here, we developed blood-compatible matrices by surface modification with polyzwitterionic polysulfobetainic and polycarboxybetainic coatings. Photoreactive zwitterionic terpolymers were synthesized by free-radical polymerization of zwitterionic, photoreactive, and fluorescent monomers. Upon UV irradiation, the terpolymers were photodeposited and mutually crosslinked on the surface of hydrophobic polystyrene-co-divinylbenzene and hydrophilic polyacrylamide-co-polyacrylate (DALI) beads. Fluorescent microscopy revealed coatings with an average thickness of 5 µm, which were limited to the bead surface. Blood compatibility was assessed based on polymer-induced hemolysis, coagulation parameters, and in vitro tests. The maintenance of the adsorption capacity after coating was studied in human whole blood with cytokines for polystyrene beads (remained capacity 25–67%) and with low-density lipoprotein (remained capacity 80%) for polyacrylate beads. Coating enhanced the blood compatibility of hydrophobic, but not of hydrophilic adsorbents. The most prominent effect was observed on coagulation parameters (e.g., PT, aPTT, TT, and protein C) and neutrophil count. Polycarboxybetaine with a charge spacer of five carbons was the most promising polyzwitterion for the coating of adsorbents for whole blood apheresis. Full article
(This article belongs to the Special Issue Biocompatibility of Functional Biomaterials)
Show Figures

Graphical abstract

11 pages, 3076 KiB  
Article
Wire Arc Additive Manufacturing of Zinc as a Degradable Metallic Biomaterial
by Rishabh Soni, Suyog Jhavar, Suhela Tyeb, Saurabh Kumar Gupta, Satyam Suwas and Kaushik Chatterjee
J. Funct. Biomater. 2022, 13(4), 212; https://doi.org/10.3390/jfb13040212 - 1 Nov 2022
Cited by 1 | Viewed by 2992
Abstract
Wire arc additive manufacturing (WAAM) offers a high rate of material deposition among various additive manufacturing techniques with wire as feedstock material but has not been established for zinc alloys. Zn alloys can be used as degradable biomaterials, in contrast to conventional permanent [...] Read more.
Wire arc additive manufacturing (WAAM) offers a high rate of material deposition among various additive manufacturing techniques with wire as feedstock material but has not been established for zinc alloys. Zn alloys can be used as degradable biomaterials, in contrast to conventional permanent metallic biomaterials. In this work, commercially pure Zn was processed by WAAM to obtain near-dense parts, and the properties obtained through WAAM-processed Zn were compared with wrought (WR) Zn samples. The microstructure and hardness values of the WAAM (41 ± 1 HV0.3) components were found to be similar to those of the WR (35 ± 2 HV0.3) components. Bulk X-ray diffraction texture measurements suggested that WAAM builds exhibit a heavily textured microstructure compared to the WR counterparts, with peak intensities around <3 3–6 2> or <0 0 0 2> in the directions parallel to the build direction (BD). The corrosion rates in simulated body fluid (SBF) were similar for WAAM (0.45 mmpy) and WR (0.3 mmpy) samples. The weight loss measurements in SBF were found to be marginally higher in the WAAM samples compared to the WR counterparts for a duration of up to 21 days. MC3T3-E1 preosteoblasts were found to be healthy and proliferating in the culture medium containing the degradation products from WAAM-Zn in a manner similar to WR-Zn. This work establishes the feasibility of processing Zn by WAAM for use in bioresorbable metallic implants. Full article
(This article belongs to the Special Issue Frontiers in Biodegradable Materials and Their Processing)
Show Figures

Graphical abstract

13 pages, 2656 KiB  
Review
Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis
by Olivia Lili Zhang, John Yun Niu, Iris Xiaoxue Yin, Ollie Yiru Yu, May Lei Mei and Chun Hung Chu
J. Funct. Biomater. 2022, 13(4), 210; https://doi.org/10.3390/jfb13040210 - 29 Oct 2022
Cited by 9 | Viewed by 1742
Abstract
Objective: Researchers are studying the use of antimicrobial peptides as functional biomaterials to prevent and treat dental caries. This study aims to investigate the global research interest in antimicrobial peptides for caries management. Methods: Two independent investigators systematically searched with keywords (‘Caries’ OR [...] Read more.
Objective: Researchers are studying the use of antimicrobial peptides as functional biomaterials to prevent and treat dental caries. This study aims to investigate the global research interest in antimicrobial peptides for caries management. Methods: Two independent investigators systematically searched with keywords (‘Caries’ OR ‘Dental caries’) AND (‘Antimicrobial peptide’ OR ‘AMP’ OR ‘Statherin’ OR ‘Histatin’ OR ‘Defensin’ OR ‘Cathelicidin’) on Web of Science, PubMed and Scopus. They removed duplicate publications and screened the titles and abstracts to identify relevant publications. The included publications were summarized and classified as laboratory studies, clinical trials or reviews. The citation count and citation density of the three publication types were compared using a one-way analysis of variance. The publications’ bibliometric data were analyzed using the Bibliometrix program. Results: This study included 163 publications with 115 laboratory studies (71%), 29 clinical trials (18%) and 19 reviews (11%). The number of publications per year have increased steadily since 2002. The citation densities (mean ± SD) of laboratory study publications (3.67 ± 2.73) and clinical trial publications (2.63 ± 1.85) were less than that of review articles (5.79 ± 1.27) (p = 0.002). The three publication types had no significant difference in citation count (p = 0.54). Most publications (79%, 129/163) reported the development of a novel antimicrobial peptide. China (52/163, 32%) and the US (29/163, 18%) contributed to 50% (81/163) of the publications. Conclusion: This bibliometric analysis identified an increasing trend in global interest in antimicrobial peptides for caries management since 2002. The main research topic was the development of novel antimicrobial peptides. Most publications were laboratory studies, as were the three publications with the highest citation counts. Laboratory studies had high citation counts, whereas reviews had high citation density. Full article
Show Figures

Figure 1

13 pages, 3002 KiB  
Article
Effect of Different Cavity Disinfectants on Adhesion to Dentin of Permanent Teeth
by Ana Coelho, Luís Vilhena, Maria Antunes, Inês Amaro, Anabela Paula, Carlos Miguel Marto, José Saraiva, Manuel Marques Ferreira, Eunice Carrilho and Amílcar Ramalho
J. Funct. Biomater. 2022, 13(4), 209; https://doi.org/10.3390/jfb13040209 - 28 Oct 2022
Cited by 5 | Viewed by 2803
Abstract
After the elimination of dental caries lesions, some microorganisms may remain viable in the tooth structure. Thus, cavity disinfection is an important procedure. The aim of this study was to evaluate the effect of cavity disinfectants on the adhesion to dentin of permanent [...] Read more.
After the elimination of dental caries lesions, some microorganisms may remain viable in the tooth structure. Thus, cavity disinfection is an important procedure. The aim of this study was to evaluate the effect of cavity disinfectants on the adhesion to dentin of permanent teeth. Sixty molars were ground flat and randomly assigned to six groups: control; chlorhexidine; Aloe vera; glutaraldehyde; EDTA; ethanol. Cavity disinfectants were applied, rinsed, and air-dried. The restorations were performed with the aid of polyethylene tubes. Shear bond strength, work to detachment, and shear modulus were evaluated. All data were statistically analyzed and the level of significance was set at 5%. The control group showed the lowest shear bond strength (8.34 ± 2.68 MPa). Aloe vera showed the lowest work to debonding (2284 J/m2) while chlorhexidine showed the highest (9347 J/m2). Regarding the shear modulus, ethanol, chlorhexidine, and EDTA presented similar values to the control group (216.11 kPa), and glutaraldehyde and Aloe vera presented values twice as high. The use of chlorhexidine, ethanol, EDTA, glutaraldehyde, and Aloe vera did not impair the adhesion established between the dentin of permanent teeth and composite resin. Even though there is a need for clinical studies to support these findings, all disinfectants seem to be good choices as pretreatment agents. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials)
Show Figures

Figure 1

20 pages, 4792 KiB  
Article
Assessing the Efficacy of Whole-Body Titanium Dental Implant Surface Modifications in Inducing Adhesion, Proliferation, and Osteogenesis in Human Adipose Tissue Stem Cells
by Federico Ferro, Federico Azzolin, Renza Spelat, Lorenzo Bevilacqua and Michele Maglione
J. Funct. Biomater. 2022, 13(4), 206; https://doi.org/10.3390/jfb13040206 - 27 Oct 2022
Cited by 3 | Viewed by 1845
Abstract
Background: Although the influence of titanium implants’ micro-surface properties on titanium discs has been extensively investigated, the research has not taken into consideration their whole-body effect, which may be considered possible using a combinatorial approach. Methods: Five titanium dental implants with a similar [...] Read more.
Background: Although the influence of titanium implants’ micro-surface properties on titanium discs has been extensively investigated, the research has not taken into consideration their whole-body effect, which may be considered possible using a combinatorial approach. Methods: Five titanium dental implants with a similar moderate roughness and different surface textures were thoroughly characterized. The cell adhesion and proliferation were assessed after adipose-tissue-derived stem cells (ADSCs) were seeded on whole-body implants. The implants’ inductive properties were assessed by evaluating the osteoblastic gene expression. Results: The surface micro-topography was analyzed, showing that hydroxyapatite (HA)-blasted and bland acid etching implants had the highest roughness and a lower number of surface particles. Cell adhesion was observed after 24 h on all the implants, with the highest score registered for the HA-blasted and bland acid etching implants. Cell proliferation was observed only on the laser-treated and double-acid-etched surfaces. The ADSCs expressed collagen type I, osteonectin, and alkaline phosphatase on all the implant surfaces, with high levels on the HA-treated surfaces, which also triggered osteocalcin expression on day seven. Conclusions: The findings of this study show that the morphology and treatment of whole titanium dental implants, primarily HA-treated and bland acid etching implants, impact the adherence and activity of ADSCs in osteogenic differentiation in the absence of specific osteo-inductive signals. Full article
Show Figures

Graphical abstract

13 pages, 1660 KiB  
Article
In Vitro and In Vivo Evaluation of a Nano-Tool Appended Oilmix (Clove and Tea Tree Oil) Thermosensitive Gel for Vaginal Candidiasis
by Abdulrab Ahmed M. Alkhanjaf, Md Tanwir Athar, Zabih Ullah, Ahmad Umar and Ibrahim Ahmed Shaikh
J. Funct. Biomater. 2022, 13(4), 203; https://doi.org/10.3390/jfb13040203 - 26 Oct 2022
Cited by 4 | Viewed by 3056
Abstract
The main objective of the proposed work was the development of a thermosensitive gel (containing clove and tea tree oil) for the management of vaginal candidiasis. Both oils have been recommended to be used separately in a topical formulation for vaginal candidiasis. Incorporating [...] Read more.
The main objective of the proposed work was the development of a thermosensitive gel (containing clove and tea tree oil) for the management of vaginal candidiasis. Both oils have been recommended to be used separately in a topical formulation for vaginal candidiasis. Incorporating two natural ingredients (clove and tea tree oil) into a product give it a broad antimicrobial spectrum and analgesic properties. The two oils were mixed together at a 3:1 ratio and converted into o/w nanoemulsion using the aqueous titration method and plotting pseudo ternary phase diagrams. Further transformations resulted in a gel with thermosensitive properties. To determine the final formulation’s potential for further clinical investigation, in vitro analyses (viscosity measurement, MTT assay, mucoadhesion, ex vivo permeation) and in vivo studies (fungal clearance kinetics in an animal model) were conducted. The current effort leveraged the potential of tea tree and clove oils as formulation ingredients and natural therapeutic agents for vaginal infections. Its synergy generated a stable and effective thermosensitive gel that can be utilized for recurrent candidiasis and other infections. Full article
(This article belongs to the Special Issue Nanomaterials and Their Biomedical Applications)
Show Figures

Figure 1

24 pages, 1847 KiB  
Review
Two-Dimensional Graphitic Carbon Nitride (g-C3N4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications
by Mehrab Pourmadadi, Maryam Rajabzadeh-Khosroshahi, Fatemeh Saeidi Tabar, Narges Ajalli, Amirmasoud Samadi, Mahsa Yazdani, Fatemeh Yazdian, Abbas Rahdar and Ana M. Díez-Pascual
J. Funct. Biomater. 2022, 13(4), 204; https://doi.org/10.3390/jfb13040204 - 26 Oct 2022
Cited by 25 | Viewed by 6606
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials [...] Read more.
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

12 pages, 4166 KiB  
Article
Raman Analyses of Laser Irradiation-Induced Microstructural Variations in Synthetic Hydroxyapatite and Human Teeth
by Hayata Imamura, Wenliang Zhu, Tetsuya Adachi, Noriko Hiraishi, Elia Marin, Nao Miyamoto, Toshiro Yamamoto, Narisato Kanamura and Giuseppe Pezzotti
J. Funct. Biomater. 2022, 13(4), 200; https://doi.org/10.3390/jfb13040200 - 25 Oct 2022
Cited by 3 | Viewed by 1695
Abstract
The microstructural and molecular-scale variations induced by laser irradiation treatment on human teeth enamel in comparison with synthetic hydroxyapatite (HAp) were examined through Raman microprobe spectroscopy as a function of irradiation power. The results demonstrated that laser irradiation could modify stoichiometry, microstructure, and [...] Read more.
The microstructural and molecular-scale variations induced by laser irradiation treatment on human teeth enamel in comparison with synthetic hydroxyapatite (HAp) were examined through Raman microprobe spectroscopy as a function of irradiation power. The results demonstrated that laser irradiation could modify stoichiometry, microstructure, and the population of crystallographic defects, as well as the hardness of the materials. These modifications showed strong dependences on both laser power and initial nonstoichiometric structure (defective content of HPO4), because of the occurrence of distinct reactions and structural reconstruction. The reported observations can redirect future trends in tooth whitening by laser treatment and the production of HAp coatings because of the important role of stoichiometric defects. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

12 pages, 2040 KiB  
Article
Oxidized Alginate Dopamine Conjugate: A Study to Gain Insight into Cell/Particle Interactions
by Adriana Trapani, Filomena Corbo, Erika Stefàno, Loredana Capobianco, Antonella Muscella, Santo Marsigliante, Antonio Cricenti, Marco Luce, David Becerril and Stefano Bellucci
J. Funct. Biomater. 2022, 13(4), 201; https://doi.org/10.3390/jfb13040201 - 25 Oct 2022
Cited by 3 | Viewed by 1425
Abstract
Background: We had previously synthetized a macromolecular prodrug consisting of oxidized Alginate and dopamine (AlgOx-Da) for a potential application in Parkinson disease (PD). Methods: In the present work, we aimed at gaining an insight into the interactions occurring between AlgOx-Da and [...] Read more.
Background: We had previously synthetized a macromolecular prodrug consisting of oxidized Alginate and dopamine (AlgOx-Da) for a potential application in Parkinson disease (PD). Methods: In the present work, we aimed at gaining an insight into the interactions occurring between AlgOx-Da and SH-SY5Y neuronal cell lines in view of further studies oriented towards PD treatment. With the scope of ascertaining changes in the external and internal structure of the cells, multiple methodologies were adopted. Firstly, fluorescently labeled AlgOx-Da conjugate was synthetized in the presence of fluorescein 5(6)-isothiocyanate (FITC), providing FITC-AlgOx-Da, which did not alter SH-SY5Y cell viability according to the sulforhodamine B test. Furthermore, the uptake of FITC-AlgOx-Da by the SH-SY5Y cells was studied using scanning near-field optical microscopy and assessments of cell morphology over time were carried out using atomic force microscopy. Results: Notably, the AFM methodology confirmed that no relevant damage occurred to the neuronal cells. Regarding the effects of DA on the intracellular reactive oxygen species (ROS) production, AlgOx-Da reduced them in comparison to free DA, while AlgOx did almost not influence ROS production. Conclusions: these findings seem promising for designing in vivo studies aiming at administering Oxidized Alginate Dopamine Conjugate for PD treatment. Full article
Show Figures

Figure 1

11 pages, 2014 KiB  
Article
Surface Free Energy and Composition Changes and Ob Cellular Response to CHX-, PVPI-, and ClO2-Treated Titanium Implant Materials
by Roland Masa, István Pelsőczi-Kovács, Zoltán Aigner, Albert Oszkó, Kinga Turzó and Krisztina Ungvári
J. Funct. Biomater. 2022, 13(4), 202; https://doi.org/10.3390/jfb13040202 - 25 Oct 2022
Cited by 2 | Viewed by 1706
Abstract
The study evaluated the interaction of a titanium dental implant surface with three different antibacterial solutions: chlorhexidine, povidone-iodine, and chlorine dioxide. Implant surface decontamination is greatly challenging modern implant dentistry. Alongside mechanical cleaning, different antibacterial agents are widely used, though these could alter [...] Read more.
The study evaluated the interaction of a titanium dental implant surface with three different antibacterial solutions: chlorhexidine, povidone-iodine, and chlorine dioxide. Implant surface decontamination is greatly challenging modern implant dentistry. Alongside mechanical cleaning, different antibacterial agents are widely used, though these could alter implant surface properties. Commercially pure (CP) grade 4 titanium (Ti) discs were treated with three different chemical agents (chlorhexidine 0.2% (CHX), povidone-iodine 10% (PVPI), chlorine dioxide 0.12% (ClO2)) for 5 min. Contact angle measurements, X-ray photoelectron spectroscopy (XPS) analysis, and cell culture studies were performed. Attachment and proliferation of primary human osteoblast cells were investigated via MTT (dimethylthiazol–diphenyl tetrazolium bromide), alamarBlue, LDH (lactate dehydrogenase), and fluorescent assays. Contact angle measurements showed that PVPI-treated samples (Θ = 24.9 ± 4.1) gave no difference compared with controls (Θ = 24.6 ± 5.4), while CHX (Θ = 47.2 ± 4.1) and ClO2 (Θ = 39.2 ± 9.8) treatments presented significantly higher Θ values. All samples remained in the hydrophilic region. XPS analysis revealed typical surface elements of CP grade 4 titanium (Ti, O, and C). Both MTT and alamarBlue cell viability assays showed similarity between treated and untreated control groups. The LDH test revealed no significant difference, and fluorescent staining confirmed these results. Although there was a difference in surface wettability, a high proliferation rate was observed in all treated groups. The in vitro study proved that CHX, PVPI, and ClO2 are proper candidates as dental implant decontamination agents. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

19 pages, 4860 KiB  
Article
Influence of Ceramic Particles Size and Ratio on Surface—Volume Features of the Naturally Derived HA-Reinforced Filaments for Biomedical Applications
by Aura-Cătălina Mocanu, Florin Miculescu, Cătălina-Andreea Dascălu, Ștefan Ioan Voicu, Mădălina-Andreea Pandele, Robert-Cătălin Ciocoiu, Dan Batalu, Sorina Dondea, Valentina Mitran and Lucian-Toma Ciocan
J. Funct. Biomater. 2022, 13(4), 199; https://doi.org/10.3390/jfb13040199 - 21 Oct 2022
Cited by 9 | Viewed by 2353
Abstract
The intersection of the bone tissue reconstruction and additive manufacturing fields promoted the advancement to a prerequisite and new feedstock resource for high-performance bone-like-scaffolds manufacturing. In this paper, the proposed strategy was directed toward the use of bovine-bone-derived hydroxyapatite (HA) for surface properties [...] Read more.
The intersection of the bone tissue reconstruction and additive manufacturing fields promoted the advancement to a prerequisite and new feedstock resource for high-performance bone-like-scaffolds manufacturing. In this paper, the proposed strategy was directed toward the use of bovine-bone-derived hydroxyapatite (HA) for surface properties enhancement and mechanical features reinforcement of the poly(lactic acid) matrix for composite filaments extrusion. The involvement of completely naturally derived materials in the technological process was based on factors such as sustainability, low cost, and a facile and green synthesis route. After the HA isolation and extraction from bovine bones by thermal processing, milling, and sorting, two dependent parameters—the HA particles size (<40 μm, <100 μm, and >125 μm) and ratio (0–50% with increments of 10%)—were simultaneously modulated for the first time during the incorporation into the polymeric matrix. The resulting melt mixtures were divided for cast pellets and extruded filaments development. Based on the obtained samples, the study was further designed to examine several key features by complementary surface–volume characterization techniques. Hence, the scanning electron microscopy and micro-CT results for all specimens revealed a uniform and homogenous dispersion of HA particles and an adequate adhesion at the ceramic/polymer interface, without outline pores, sustained by the shape and surface features of the synthesized ceramic particles. Moreover, an enhanced wettability (contact angle in the ~70−21° range) and gradual mechanical takeover were indicated once the HA ratio increased, independent of the particles size, which confirmed the benefits and feasibility of evenly blending the natural ceramic/polymeric components. The results correlation led to the selection of optimal technological parameters for the synthesis of adequate composite filaments destined for future additive manufacturing and biomedical applications. Full article
(This article belongs to the Special Issue Bioceramics and Bioactive Glass-Based Materials)
Show Figures

Figure 1

13 pages, 6744 KiB  
Article
Application of the Composite Fibers Based on Chitosan and Chitin Nanofibrils in Cosmetology
by Vera V. Kodolova-Chukhontseva, Elena N. Dresvyanina, Yulia A. Nashchekina, Irina P. Dobrovol’skaya, Sergei G. Bystrov, Elena M. Ivan’kova, Vladimir E. Yudin and Pierfrancesco Morganti
J. Funct. Biomater. 2022, 13(4), 198; https://doi.org/10.3390/jfb13040198 - 20 Oct 2022
Cited by 1 | Viewed by 1777
Abstract
Chitosan and composite fibers containing chitin nanofibrils have been developed for use in cosmetology. The tensile strength of the chitosan multifilaments is 160.6 ± 19.0 MPa, and of the composite multifilaments containing chitin, nanofibrils are 198.0 ± 18.4 MPa. Chitin nanofibrils introduced into [...] Read more.
Chitosan and composite fibers containing chitin nanofibrils have been developed for use in cosmetology. The tensile strength of the chitosan multifilaments is 160.6 ± 19.0 MPa, and of the composite multifilaments containing chitin, nanofibrils are 198.0 ± 18.4 MPa. Chitin nanofibrils introduced into the chitosan solution contribute to the creation of a new spatial arrangement of chitosan chains and their denser packing. The studies carried out by optical, scanning electron, and atomic force microscopy has shown that the serum, consisting of a mixture of lactic acid and sodium lactate, contains extended oriented structures—“liquid filaments”. It has been also shown that a mixture of serum and composite fibers based on chitosan and chitin nanofibrils has mucoadhesive, film-forming properties. The introduction of composite fibers containing chitin nanofibrils into the serum promotes the reinforcing effect of liquid filaments, the lifting effect of the film. The obtained composition can be used in cosmetology as a skin care product. Full article
Show Figures

Figure 1

9 pages, 2353 KiB  
Article
Evaluation of Effects of Various Irrigating Solutions on Chemical Structure of Root Canal Dentin Using FTIR, SEM, and EDS: An In Vitro Study
by Indu Padmakumar, Dharam Hinduja, Abdul Mujeeb, Raghu Kachenahalli Narasimhaiah, Ashwini Kumar Saraswathi, Mubashir Baig Mirza, Ali Robaian, Syed Nahid Basheer, Mohmed Isaqali Karobari and Giuseppe Alessandro Scardina
J. Funct. Biomater. 2022, 13(4), 197; https://doi.org/10.3390/jfb13040197 - 20 Oct 2022
Cited by 7 | Viewed by 1854
Abstract
Background: Sequential chemical application for irrigating a root canal during chemomechanical debridement can affect the dentin microstructure. Understanding the effects of various irrigants on chemical properties of dentin can elucidate their effects on physical properties and thereby explain the higher incidence of structural [...] Read more.
Background: Sequential chemical application for irrigating a root canal during chemomechanical debridement can affect the dentin microstructure. Understanding the effects of various irrigants on chemical properties of dentin can elucidate their effects on physical properties and thereby explain the higher incidence of structural failure in endodontically treated teeth. This in vitro research aimed to compare and evaluate the effects of three different irrigating solutions on the chemical structure of root canal dentin in extracted human teeth. Methods: Forty-eight extracted single-rooted mandibular premolar teeth were sectioned at the cemento–enamel junction by a diamond disc and were then randomly assigned to four groups of twelve samples each. The groups were irrigated using 5.25% NaOCl, ozonated olive oil, silver citrate, or distilled water. Dentin sections measuring 1.5 mm were obtained from the root portion and each section and were analyzed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and electron-dispersive spectroscopy (EDS). FTIR and EDS values are reported as means ± standard deviations. Data were analyzed using an ANOVA and a post hoc Bonferroni test (p < 0.05). Results: A comparison of the FTIR and EDS values among the groups using ANOVA revealed statistically significant differences in the organic and inorganic peak values among the groups. An intergroup comparison between NaOCl with silver citrate and ozonated olive oil revealed significant reductions in the carbonate and phosphate peak values in the NaOCl group (p < 0.05). The EDS values tabulated for the carbon, oxygen, phosphorous, and calcium peak levels showed significant differences between the groups using an ANOVA. An SEM analysis was conducted under 1500× magnification, which revealed smear layer removal in the silver citrate group. Conclusions: The silver citrate solution and the ozonated olive oil caused less changes in the organic and mineral contents of dentin than sodium hypochlorite. Full article
(This article belongs to the Special Issue Advanced Materials for Clinical Endodontic Applications)
Show Figures

Figure 1

11 pages, 1767 KiB  
Review
Overview of Physicochemical Properties of Nanoparticles as Drug Carriers for Targeted Cancer Therapy
by Vugar Yagublu, Aynura Karimova, Javahir Hajibabazadeh, Christoph Reissfelder, Mustafa Muradov, Stefano Bellucci and Adil Allahverdiyev
J. Funct. Biomater. 2022, 13(4), 196; https://doi.org/10.3390/jfb13040196 - 20 Oct 2022
Cited by 23 | Viewed by 5100
Abstract
The advent of nanotechnology has brought about revolutionary innovations in biological research techniques and medical practice. In recent years, various “smart” nanocarriers have been introduced to deliver therapeutic agents specifically to the tumor tissue in a controlled manner, thereby minimizing their side effects [...] Read more.
The advent of nanotechnology has brought about revolutionary innovations in biological research techniques and medical practice. In recent years, various “smart” nanocarriers have been introduced to deliver therapeutic agents specifically to the tumor tissue in a controlled manner, thereby minimizing their side effects and reducing both dosage and dosage frequency. A large number of nanoparticles have demonstrated initial success in preclinical evaluation but modest therapeutic benefits in the clinical setting, partly due to insufficient delivery to the tumor site and penetration in tumor tissue. Therefore, a precise understanding of the relationships betweenthe physicochemical properties of nanoparticles and their interaction with the surrounding microenvironment in the body is extremely important for achieving higher concentrations and better functionality in tumor tissues. This knowledge would help to effectively combine multiple advantageous functions in one nanoparticle. The main focus of the discussion in this review, therefore, will relate to the main physicochemical properties of nanoparticles while interacting within the body and their tuning potential for increased performance. Full article
(This article belongs to the Special Issue Biocompatibility of Functional Biomaterials)
Show Figures

Figure 1

17 pages, 9933 KiB  
Article
Remote Eradication of Bacteria on Orthopedic Implants via Delayed Delivery of Polycaprolactone Stabilized Polyvinylpyrrolidone Iodine
by Yikai Wang, Wangsiyuan Teng, Zengjie Zhang, Siyuan Ma, Zhihui Jin, Xingzhi Zhou, Yuxiao Ye, Chongda Zhang, Zhongru Gou, Xiaohua Yu, Zhaoming Ye and Yijun Ren
J. Funct. Biomater. 2022, 13(4), 195; https://doi.org/10.3390/jfb13040195 - 19 Oct 2022
Cited by 2 | Viewed by 1825
Abstract
Bacteria-associated late infection of the orthopedic devices would further lead to the failure of the implantation. However, present ordinary antimicrobial strategies usually deal with early infection but fail to combat the late infection of the implants due to the burst release of the [...] Read more.
Bacteria-associated late infection of the orthopedic devices would further lead to the failure of the implantation. However, present ordinary antimicrobial strategies usually deal with early infection but fail to combat the late infection of the implants due to the burst release of the antibiotics. Thus, to fabricate long-term antimicrobial (early antibacterial, late antibacterial) orthopedic implants is essential to address this issue. Herein, we developed a sophisticated MAO-I2-PCLx coating system incorporating an underlying iodine layer and an upper layer of polycaprolactone (PCL)-controlled coating, which could effectively eradicate the late bacterial infection throughout the implantation. Firstly, micro-arc oxidation was used to form a microarray tubular structure on the surface of the implants, laying the foundation for iodine loading and PCL bonding. Secondly, electrophoresis was applied to load iodine in the tubular structure as an efficient bactericidal agent. Finally, the surface-bonded PCL coating acts as a controller to regulate the release of iodine. The hybrid coatings displayed great stability and control release capacity. Excellent antibacterial ability was validated at 30 days post-implantation via in vitro experiments and in vivo rat osteomyelitis model. Expectedly, it can become a promising bench-to-bedside strategy for current infection challenges in the orthopedic field. Full article
Show Figures

Figure 1

17 pages, 871 KiB  
Review
Antimicrobial Biomaterials for the Healing of Infected Bone Tissue: A Systematic Review of Microtomographic Data on Experimental Animal Models
by Lorena Castro Mariano, Maria Helena Raposo Fernandes and Pedro Sousa Gomes
J. Funct. Biomater. 2022, 13(4), 193; https://doi.org/10.3390/jfb13040193 - 18 Oct 2022
Cited by 5 | Viewed by 1866
Abstract
Bone tissue infection is a major clinical challenge with high morbidity and a significant healthcare burden. Therapeutic approaches are usually based on systemic antibacterial therapies, despite the potential adverse effects associated with antibiotic resistance, persistent and opportunistic infections, hypersensitivity, and toxicity issues. Most [...] Read more.
Bone tissue infection is a major clinical challenge with high morbidity and a significant healthcare burden. Therapeutic approaches are usually based on systemic antibacterial therapies, despite the potential adverse effects associated with antibiotic resistance, persistent and opportunistic infections, hypersensitivity, and toxicity issues. Most recently, tissue engineering strategies, embracing local delivery systems and antibacterial biomaterials, have emerged as a promising alternative to systemic treatments. Despite the reported efficacy in managing bacterial infection, little is known regarding the outcomes of these devices on the bone healing process. Accordingly, this systematic review aims, for the first time, to characterize the efficacy of antibacterial biomaterials/tissue engineering constructs on the healing process of the infected bone within experimental animal models and upon microtomographic characterization. Briefly, a systematic evaluation of pre-clinical studies was performed according to the PRISMA guidelines, further complemented with bias analysis and methodological quality assessments. Data reported a significant improvement in the healing of the infected bone when an antibacterial construct was implanted, compared with the control—construct devoid of antibacterial activity, particularly at longer time points. Furthermore, considering the assessment of bias, most included studies revealed an inadequate reporting methodology, which may lead to an unclear or high risk of bias and directly hinder future studies. Full article
Show Figures

Figure 1

14 pages, 4579 KiB  
Article
Benzyldimethyldodecyl Ammonium Chloride Doped Dental Adhesive: Impact on Core’s Properties, Biosafety, and Antibacterial/Bonding Performance after Aging
by Lamia Sami Mokeem, Abdulrahman A. Balhaddad, Isadora Martini Garcia, Fabrício Mezzomo Collares and Mary Anne S. Melo
J. Funct. Biomater. 2022, 13(4), 190; https://doi.org/10.3390/jfb13040190 - 17 Oct 2022
Cited by 6 | Viewed by 2089
Abstract
Current dental adhesives lack antibacterial properties. This study aimed to explore the effect of incorporating benzyldimethyldodecyl ammonium chloride (BDMDAC) on the degree of conversion, contact angle, ultimate tensile strength (UTS), microtensile bond strength (µTBS), cytotoxicity, antibacterial and bonding performance after artificial aging. A [...] Read more.
Current dental adhesives lack antibacterial properties. This study aimed to explore the effect of incorporating benzyldimethyldodecyl ammonium chloride (BDMDAC) on the degree of conversion, contact angle, ultimate tensile strength (UTS), microtensile bond strength (µTBS), cytotoxicity, antibacterial and bonding performance after artificial aging. A dental adhesive was doped with BDMDAC in the concentration range of 1–5 wt.%. For antibacterial assays, the BDMDAC compound was subject to planktonic cells of Streptococcus mutans. Then, after incorporation into the dental adhesive, an S. mutans biofilm model was used to grow 48 h-mature biofilms. The biofilms grown over the formulated materials were assessed by colony-forming unit (CFU) counting assay and fluorescence microscopy staining. In addition, the cytotoxicity was evaluated. Samples were subjected to 10,000 thermal cycles for aging and evaluated by UTS, µTBS, and CFU. Incorporating BDMDAC did not increase the cytotoxicity or change the physical properties when the mass fraction of the BDMDAC was 1–5 wt.%. The UTS of BDMDAC-doped adhesives was not impaired immediately or over time. A significant bacterial reduction was obtained for the mass fraction of the BDMDAC greater than 3 wt.%. However, the BDMDAC-doped adhesives did not offer an antibacterial effect after artificial aging. The overall results indicate that the BDMDAC strategy has the potential to control of microbial growth of cariogenic planktonic cells and biofilms. However, other new technological approaches are needed to overcome the deleterious effect of BDMDAC release over time such as those based on the principle of drug delivery systems whereby the BDMDAC is transported on microparticles or core shells, providing tangible benefits to oral health over time. Full article
Show Figures

Figure 1

11 pages, 5324 KiB  
Article
Effect of Surface Pre-Reacted Glass Ionomer Containing Dental Sealant on the Inhibition of Enamel Demineralization
by Yuko Ogawa, Mahmoud Sayed, Noriko Hiraishi, Nadin Al-Haj Husain, Junji Tagami, Mutlu Özcan and Yasushi Shimada
J. Funct. Biomater. 2022, 13(4), 189; https://doi.org/10.3390/jfb13040189 - 14 Oct 2022
Cited by 6 | Viewed by 2587
Abstract
The effect of a surface pre-reacted glass ionomer (S-PRG)-containing sealant on the demineralization inhibition and remineralization of intact enamel adjacent to the sealant material was investigated. BeautiSealant (BTS, S-PRG sealant, Shofu), Teeth Mate F-12.0 (TMF, fluoride-releasing sealant, Kuraray Noritake Dental), and an experimental [...] Read more.
The effect of a surface pre-reacted glass ionomer (S-PRG)-containing sealant on the demineralization inhibition and remineralization of intact enamel adjacent to the sealant material was investigated. BeautiSealant (BTS, S-PRG sealant, Shofu), Teeth Mate F-12.0 (TMF, fluoride-releasing sealant, Kuraray Noritake Dental), and an experimental silica-filler sealant were investigated. After pH cycling for 10 days, the enamel surface adjacent to the sealant material was observed using confocal laser microscopy and scanning electron microscopy. The polymerized sealant disks were immersed in a demineralized solution (pH: 4.3) to measure pH change. The enamel specimens with polymerized sealant disks were additionally immersed in demineralized solution, followed by energy-dispersive X-ray spectroscopy. The demineralized area of BTS was significantly smaller than that of TMF and SS (p < 0.05). The surfaces adjacent to the sealant of TMF and SS were demineralized, while the surface of BTS was comparatively intact. An increase in pH values were observed in the BTS and TMF groups. Enamel surfaces presented an inhibition of demineralization for BTS and TMF, but not for SS. Fluoride uptake from the polymerized sealant was greater for BTS than for TMF. The S-PRG-containing sealant showed a buffering ability, demineralization inhibition, promotion of remineralization, and it can be advised for clinical applications. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Graphical abstract

22 pages, 6245 KiB  
Review
Precise Design Strategies of Nanotechnologies for Controlled Drug Delivery
by Shiyi Huang and Xianting Ding
J. Funct. Biomater. 2022, 13(4), 188; https://doi.org/10.3390/jfb13040188 - 14 Oct 2022
Cited by 3 | Viewed by 2257
Abstract
Rapid advances in nanotechnologies are driving the revolution in controlled drug delivery. However, heterogeneous barriers, such as blood circulation and cellular barriers, prevent the drug from reaching the cellular target in complex physiologic environments. In this review, we discuss the precise design of [...] Read more.
Rapid advances in nanotechnologies are driving the revolution in controlled drug delivery. However, heterogeneous barriers, such as blood circulation and cellular barriers, prevent the drug from reaching the cellular target in complex physiologic environments. In this review, we discuss the precise design of nanotechnologies to enhance the efficacy, quality, and durability of drug delivery. For drug delivery in vivo, drugs loaded in nanoplatforms target particular sites in a spatial- and temporal-dependent manner. Advances in stimuli-responsive nanoparticles and carbon-based drug delivery platforms are summarized. For transdermal drug delivery systems, specific strategies including microneedles and hydrogel lead to a sustained release efficacy. Moreover, we highlight the current limitations of clinical translation and an incentive for the future development of nanotechnology-based drug delivery. Full article
(This article belongs to the Special Issue Advanced Nanotechnology and Drug Delivery)
Show Figures

Figure 1

39 pages, 11595 KiB  
Review
Calcium Phosphate-Based Biomaterials for Bone Repair
by Xiaodong Hou, Lei Zhang, Zifei Zhou, Xiong Luo, Tianlong Wang, Xinyu Zhao, Bingqiang Lu, Feng Chen and Longpo Zheng
J. Funct. Biomater. 2022, 13(4), 187; https://doi.org/10.3390/jfb13040187 - 14 Oct 2022
Cited by 93 | Viewed by 9779
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient’s families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic [...] Read more.
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient’s families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair. Full article
(This article belongs to the Special Issue Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

16 pages, 3319 KiB  
Article
Development of Ulvan-Containing Liposomes as Antibacterial Drug Delivery Platforms
by Leto-Aikaterini Tziveleka, Natassa Pippa, Efstathia Ioannou, Costas Demetzos and Vassilios Roussis
J. Funct. Biomater. 2022, 13(4), 186; https://doi.org/10.3390/jfb13040186 - 13 Oct 2022
Cited by 8 | Viewed by 2301
Abstract
Liposomes, due to their safety profile and targeting ability, are among the most studied nanocarriers as antimicrobial delivery systems. However, due to lack of stability and the non-specific interaction of liposomes with cells and proteins, their use is relatively limited. Aiming to overcome [...] Read more.
Liposomes, due to their safety profile and targeting ability, are among the most studied nanocarriers as antimicrobial delivery systems. However, due to lack of stability and the non-specific interaction of liposomes with cells and proteins, their use is relatively limited. Aiming to overcome these drawbacks, it was envisaged that incorporation of ulvan, a bioactive marine sulfated polysaccharide isolated from green algae, in liposomes could improve their physicochemical properties and overall stability. Thus, we initially studied the interactions of ulvan with neutral, negatively, and positively charged lipids using Differential Scanning Calorimetry and subsequently, based on the obtained results, we prepared the respective ulvan–containing neutral and charged liposomes, where ulvan interacts with both lipid chains and polar groups in the liposomal bilayer. In a further step, we entrapped in the liposomes fusidic acid, used as a model antibacterial drug, and proceeded with the evaluation of their antibacterial activity against Staphylococcus aureus. The physicochemical properties (size and ζ-potential), stability, morphology, and entrapment efficiency of the prepared liposomal formulations were determined. Full article
Show Figures

Figure 1

23 pages, 8368 KiB  
Article
Safe-by-Design Antibacterial Peroxide-Substituted Biomimetic Apatites: Proof of Concept in Tropical Dentistry
by Ika Dewi Ana, Any Lestari, Prescillia Lagarrigue, Jérémy Soulie, Rahmi Anggraeni, Françoise Maube-Bosc, Carole Thouron, Benjamin Duployer, Christophe Tenailleau and Christophe Drouet
J. Funct. Biomater. 2022, 13(3), 144; https://doi.org/10.3390/jfb13030144 - 7 Sep 2022
Cited by 8 | Viewed by 2598
Abstract
Bone infections are a key health challenge with dramatic consequences for affected patients. In dentistry, periodontitis is a medically compromised condition for efficient dental care and bone grafting, the success of which depends on whether the surgical site is infected or not. Present [...] Read more.
Bone infections are a key health challenge with dramatic consequences for affected patients. In dentistry, periodontitis is a medically compromised condition for efficient dental care and bone grafting, the success of which depends on whether the surgical site is infected or not. Present treatments involve antibiotics associated with massive bacterial resistance effects, urging for the development of alternative antibacterial strategies. In this work, we established a safe-by-design bone substitute approach by combining bone-like apatite to peroxide ions close to natural in vivo oxygenated species aimed at fighting pathogens. In parallel, bone-like apatites doped with Ag+ or co-doped Ag+/peroxide were also prepared for comparative purposes. The compounds were thoroughly characterized by chemical titrations, FTIR, XRD, SEM, and EDX analyses. All doped apatites demonstrated significant antibacterial properties toward four major pathogenic bacteria involved in periodontitis and bone infection, namely Porphyromonas gingivalis (P. gingivalis), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Fusobacterium nucleatum (F. nucleatum), and S. aureus. By way of complementary tests to assess protein adsorption, osteoblast cell adhesion, viability and IC50 values, the samples were also shown to be highly biocompatible. In particular, peroxidated apatite was the safest material tested, with the lowest IC50 value toward osteoblast cells. We then demonstrated the possibility to associate such doped apatites with two biocompatible polymers, namely gelatin and poly(lactic-co-glycolic) acid PLGA, to prepare, respectively, composite 2D membranes and 3D scaffolds. The spatial distribution of the apatite particles and polymers was scrutinized by SEM and µCT analyses, and their relevance to the field of bone regeneration was underlined. Such bio-inspired antibacterial apatite compounds, whether pure or associated with (bio)polymers are thus promising candidates in dentistry and orthopedics while providing an alternative to antibiotherapy. Full article
(This article belongs to the Special Issue Functionalized Biomimetic Calcium Phosphates 2.0)
Show Figures

Graphical abstract

16 pages, 2273 KiB  
Article
Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study
by Milan Stoilov, Lea Stoilov, Norbert Enkling, Helmut Stark, Jochen Winter, Michael Marder and Dominik Kraus
J. Funct. Biomater. 2022, 13(3), 143; https://doi.org/10.3390/jfb13030143 - 5 Sep 2022
Cited by 13 | Viewed by 2590
Abstract
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were [...] Read more.
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were evaluated. Sandblasting and subsequent acid etching of cpTi and Ti6Al4V discs was performed with Al2O3 grains of different sizes and with varying blasting pressures. The micro- and nano-roughness of the experimental SA surfaces were analyzed via confocal, atomic force and scanning electron microscopy. Surface free energy and friction coefficients were determined. hFOB 1.19 cells were seeded to evaluate adhesion, proliferation and osteoblastic differentiation for up to 12 d via crystal violet assays, MTT assays, ALP activity assays and Alizarin Red staining assays. Differences in blasting procedures had significant impacts on surface macro- and micro-topography. The crystal violet assay revealed a significant inverse relationship between blasting grain size and hFOB cell growth after 7 days. This trend was also visible in the Alizarin Red assays staining after 12 d: there was significantly higher biomineralization visible in the group that was sandblasted with smaller grains (F180) when compared to standard-grain-size groups (F70). SA samples treated with reduced blasting pressure exhibited lower hFOB adhesion and growth capabilities at initial (2 h) and later time points for up to 7 days, when compared to the standard SA surface, even though micro-roughness and other relevant surface parameters were similar. Overall, etched-only surfaces consistently exhibited equivalent or higher adhesion, proliferation and differentiation capabilities when compared to all other sandblasted and etched surfaces. No differences were found between cpTi and Ti6Al4V SA surfaces. Subtle modifications in the blasting protocol for Ti6Al4V SA surfaces significantly affect the proliferative and differentiation behavior of human osteoblasts. Surface roughness parameters are not sufficient to predict osteoblast behavior on etched Ti6Al4V surfaces. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Oral Implantology)
Show Figures

Figure 1

17 pages, 4154 KiB  
Article
Evaluation of the Antibacterial Properties of Iron Oxide, Polyethylene Glycol, and Gentamicin Conjugated Nanoparticles against Some Multidrug-Resistant Bacteria
by Farah M. Abdulsada, Nehia N. Hussein, Ghassan M. Sulaiman, Amer Al Ali and Muhanad Alhujaily
J. Funct. Biomater. 2022, 13(3), 138; https://doi.org/10.3390/jfb13030138 - 2 Sep 2022
Cited by 24 | Viewed by 3469
Abstract
Antibacterial resistance is observed as a public health issue around the world. Every day, new resistance mechanisms appear and spread over the world. For that reason, it is imperative to improve the treatment schemes that have been developed to treat infections caused by [...] Read more.
Antibacterial resistance is observed as a public health issue around the world. Every day, new resistance mechanisms appear and spread over the world. For that reason, it is imperative to improve the treatment schemes that have been developed to treat infections caused by wound infections, for instance, Staphylococcus epidermidis (S. epidermidis), Proteus mirabilis (P. mirabilis), and Acinetobacter baumannii (A. baumannii). In this case, we proposed a method that involves mixing the Gentamicin (Gen) with iron oxide nanoparticles (Fe3O4 NPs) and a polymer (polyethylene glycol (PEG)) with Fe3O4 NPs. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and transmission electron microscope (TEM) were used to characterize Fe3O4 NPs. Zeta potential and dynamic light scattering (DLS) were also assessed. The antibacterial activity of Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, and Fe3O4 NPs+PEG+Gen composites was investigated. The results showed a significant improvement in the antibacterial activity of nanoparticles against bacterial isolates, especially for the Fe3O4 NPs+PEG+Gen as the diameter of the inhibition zone reached 26.33 ± 0.57 mm for A. baumannii, 25.66 ± 0.57 mm for P. mirabilis, and 23.66 ± 0.57 mm for S. epidermidis. The Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4+Gen, and Fe3O4+PEG+Gen also showed effectiveness against the biofilm produced by these isolated bacteria. The minimum inhibitory concentration (MIC) of Fe3O4 NPs for S. epidermidis was 25 µg mL−1 and for P. mirabilis and A. baumannii was 50 µg mL−1. The findings suggest that the prepared nanoparticles could be potential therapeutic options for treating wound infections caused by S. epidermidis, P. mirabilis, and A. baumannii. Full article
Show Figures

Figure 1

43 pages, 4242 KiB  
Review
The Role of Optical Imaging in Translational Nanomedicine
by Evelien Hesemans, Kiana Buttiens, Bella B. Manshian and Stefaan J. Soenen
J. Funct. Biomater. 2022, 13(3), 137; https://doi.org/10.3390/jfb13030137 - 31 Aug 2022
Cited by 2 | Viewed by 2327
Abstract
Nanomedicines have been a major research focus in the past two decades and are increasingly emerging in a broad range of clinical applications. However, a proper understanding of their biodistribution is required to further progress the field of nanomedicine. For this, imaging methods [...] Read more.
Nanomedicines have been a major research focus in the past two decades and are increasingly emerging in a broad range of clinical applications. However, a proper understanding of their biodistribution is required to further progress the field of nanomedicine. For this, imaging methods to monitor the delivery and therapeutic efficacy of nanoparticles are urgently needed. At present, optical imaging is the most common method used to study the biodistribution of nanomaterials, where the unique properties of nanomaterials and advances in optical imaging can jointly result in novel methods for optimal monitoring of nanomaterials in preclinical animal models. This review article aims to give an introduction to nanomedicines and their translational impact to highlight the potential of optical imaging to study the biodistribution of nanoparticles and to monitor the delivery and therapeutic efficacy at the preclinical level. After introducing both domains, the review focuses on different techniques that can be used to overcome some intrinsic limitations of optical imaging and how this can specifically benefit nanoparticle studies. Finally, we point out some important key features of nanoparticles that currently hinder their full potential in the clinic and how the advances in optical imaging can help to provide us with the information needed to further boost the clinical translation and expand the field of nanomedicines. Full article
Show Figures

Figure 1

12 pages, 5589 KiB  
Article
Antimicrobial Fibrous Bandage-like Scaffolds Using Clove Bud Oil
by Carlota von Thadden, Esra Altun, Mehmet Aydogdu, Mohan Edirisinghe and Jubair Ahmed
J. Funct. Biomater. 2022, 13(3), 136; https://doi.org/10.3390/jfb13030136 - 30 Aug 2022
Cited by 2 | Viewed by 2989
Abstract
Wounds are characterised by an anatomical disruption of the skin; this leaves the body exposed to opportunistic pathogens which contribute to infections. Current wound healing bandages do little to protect against this and when they do, they can often utilise harmful additions. Historically, [...] Read more.
Wounds are characterised by an anatomical disruption of the skin; this leaves the body exposed to opportunistic pathogens which contribute to infections. Current wound healing bandages do little to protect against this and when they do, they can often utilise harmful additions. Historically, plant-based constituents have been extensively used for wound treatment and are proven beneficial in such environments. In this work, the essential oil of clove bud (Syzygium aromaticum) was incorporated in a polycaprolactone (PCL) solution, and 44.4% (v/v) oil-containing fibres were produced through pressurised gyration. The antimicrobial activity of these bandage-like fibres was analysed using in vitro disk diffusion and the physical fibre properties were also assessed. The work showed that advantageous fibre morphologies were achieved with diameters of 10.90 ± 4.99 μm. The clove bud oil fibres demonstrated good antimicrobial properties. They exhibited inhibition zone diameters of 30, 18, 11, and 20 mm against microbial colonies of C. albicans, E. coli, S. aureus, and S. pyogenes, respectively. These microbial species are commonly problematic in environments where the skin barrier is compromised. The outcomes of this study are thus very promising and suggest that clove bud oil is highly suitable to be applied as a natural sustainable alternative to modern medicine. Full article
(This article belongs to the Special Issue Biomaterials Sourced from Nature)
Show Figures

Figure 1

14 pages, 3717 KiB  
Article
The Effect of an Er, Cr: YSGG Laser Combined with Implantoplasty Treatment on Implant Surface Roughness and Morphologic Analysis: A Pilot In Vitro Study
by Chih-Jen Lin, Ming-Hsu Tsai, Yu-Ling Wu, Hsuan Lung, Hung-Shyong Chen and Aaron Yu-Jen Wu
J. Funct. Biomater. 2022, 13(3), 133; https://doi.org/10.3390/jfb13030133 - 29 Aug 2022
Cited by 2 | Viewed by 1913
Abstract
Although laser irradiation and implantoplasty (IP) are both treatment options for peri-implantitis, no studies have yet combined these two treatment solutions. The aim of this study was to identify the effect of an Er, Cr: YSGG laser on the IP surface. In experiment [...] Read more.
Although laser irradiation and implantoplasty (IP) are both treatment options for peri-implantitis, no studies have yet combined these two treatment solutions. The aim of this study was to identify the effect of an Er, Cr: YSGG laser on the IP surface. In experiment 1, TiUnite anodized surface implants were treated with an Er, Cr: YSGG laser at 0.5 to 2 W on the panel energy setting and 20 Hz under water irrigation. In experiment 2, all implant surfaces were treated with the IP procedure first, then irradiated with the Er, Cr: YSGG laser. All samples were analyzed by stereomicroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and surface topography. Stereomicroscopy and SEM revealed no obvious surface change at any energy setting once the surface was polished with the IP procedure, whereas damage was caused to the TiUnite original implant surface when the Er, Cr: YSGG laser panel energy was set at 1 W or higher. EDS showed no significant difference in element composition once the surface was polished with the IP procedure, while a compositional change was detected when the Er, Cr: YSGG laser panel energy was set to 0.5 W or higher to irradiate the original TiUnite surface. Surface roughness may be related to laser irradiation energy, but no significant changes occurred following IP. These results indicated that the Er, Cr: YSGG laser may have little effect on the post-IP surface compared with the virgin TiUnite surface. Full article
Show Figures

Figure 1

14 pages, 2445 KiB  
Article
Biological Activities of Glass Ionomer Cement Supplemented with Fortilin on Human Dental Pulp Stem Cells
by Prawichaya Sangsuwan, Sissada Tannukit, Wilaiwan Chotigeat and Ureporn Kedjarune-Leggat
J. Funct. Biomater. 2022, 13(3), 132; https://doi.org/10.3390/jfb13030132 - 28 Aug 2022
Cited by 3 | Viewed by 1882
Abstract
This study aimed to determine the most suitable recombinant fortilin and evaluate the biological activities of glass ionomer cement (GIC) incorporated with fortilin on human dental pulp stem cells (hDPSCs). Full-length and three fragments of Penaeus merguiensis fortilin were cloned and examined for [...] Read more.
This study aimed to determine the most suitable recombinant fortilin and evaluate the biological activities of glass ionomer cement (GIC) incorporated with fortilin on human dental pulp stem cells (hDPSCs). Full-length and three fragments of Penaeus merguiensis fortilin were cloned and examined for their proliferative and cytoprotective effects on hDPSCs by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Human DPSCs were cultured with GIC supplemented with fortilin, tricalcium phosphate, or a combination of tricalcium phosphate and fortilin, designated as GIC + FL, GIC + TCP, and GIC + TCP + FL, respectively (n = 4 for each group). At given time points, hDPSCs were harvested and analyzed by MTT, quantitative reverse transcription polymerase chain reaction, alkaline phosphatase activity, and Alizarin Red assays. The full-length fortilin promoted cell proliferation and significantly increased cell survival. This protein was subsequently added into the GIC along with tricalcium phosphate to investigate the biological activities. All experimental groups showed reduced cell viability after treatment with modified GICs on days 1 and 3. The GIC + TCP + FL group significantly promoted odontoblastic differentiation at particular time points. In addition, alkaline phosphatase activity and calcium phosphate deposit were markedly increased in the GIC + TCP + FL group. Among all experimental groups, the GIC incorporated with fortilin and tricalcium phosphate demonstrated the best results on odontogenic differentiation and mineral deposition in hDPSCs. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials)
Show Figures

Figure 1

10 pages, 3085 KiB  
Article
Polyelectrolyte Multilayers Composed of Polyethyleneimine-Grafted Chitosan and Polyacrylic Acid for Controlled-Drug-Delivery Applications
by Eliz Selmin Paker and Mehmet Senel
J. Funct. Biomater. 2022, 13(3), 131; https://doi.org/10.3390/jfb13030131 - 28 Aug 2022
Cited by 7 | Viewed by 2083
Abstract
In this work, polyethyleneimine (PEI)-grafted chitosan (Chi-g-PEI) was prepared for the fabrication of layer-by-layer (LBL) films for use in sustained-drug-delivery applications. Chi-g-PEI and polyacrylic acid (PAA) multilayer films were formed using the LBL technique. Methylene blue (MB) was used as a model drug [...] Read more.
In this work, polyethyleneimine (PEI)-grafted chitosan (Chi-g-PEI) was prepared for the fabrication of layer-by-layer (LBL) films for use in sustained-drug-delivery applications. Chi-g-PEI and polyacrylic acid (PAA) multilayer films were formed using the LBL technique. Methylene blue (MB) was used as a model drug for the investigation of loading and release capabilities of the LBL films. Characterizations of the synthesized copolymer were performed using Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance spectroscopy (NMR), Thermogravimetric analysis (TGA), and X-ray Powder Diffraction (XRD) techniques, and the thickness of the LBL films was measured using Atomic force microscopy (AFM). The drug-loading and -release behaviors of the LBL films were assessed using a UV–visible spectrophotometer. The results showed that the loading capacity and release rate of MB were affected by ionic strength and pH. In addition, it was demonstrated that PEI-grafted chitosan is a good candidate for the assembling of LBL films for drug-delivery applications. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery)
Show Figures

Figure 1

Back to TopTop