Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2383 KiB  
Article
Targeted Gene Mutations in the Forest Pathogen Dothistroma septosporum Using CRISPR/Cas9
by Hannah M. McCarthy, Mariana Tarallo, Carl H. Mesarich, Rebecca L. McDougal and Rosie E. Bradshaw
Plants 2022, 11(8), 1016; https://doi.org/10.3390/plants11081016 - 8 Apr 2022
Cited by 4 | Viewed by 2687
Abstract
Dothistroma needle blight, caused by Dothistroma septosporum, has increased in incidence and severity over the last few decades and is now one of the most important global diseases of pines. Disease resistance breeding could be accelerated by knowledge of pathogen virulence factors [...] Read more.
Dothistroma needle blight, caused by Dothistroma septosporum, has increased in incidence and severity over the last few decades and is now one of the most important global diseases of pines. Disease resistance breeding could be accelerated by knowledge of pathogen virulence factors and their host targets. However, this is hindered due to inefficient targeted gene disruption in D. septosporum, which is required for virulence gene characterisation. Here we report the first successful application of CRISPR/Cas9 gene editing to a Dothideomycete forest pathogen, D. septosporum. Disruption of the dothistromin pathway regulator gene AflR, with a known phenotype, was performed using nonhomologous end-joining repair with an efficiency of >90%. Transformants with a range of disruption mutations in AflR were produced. Disruption of Ds74283, a D. septosporum gene encoding a secreted cell death elicitor, was also achieved using CRISPR/Cas9, by using a specific donor DNA repair template to aid selection where the phenotype was unknown. In this case, 100% of screened transformants were identified as disruptants. In establishing CRISPR/Cas9 as a tool for gene editing in D. septosporum, our research could fast track the functional characterisation of candidate virulence factors in D. septosporum and helps set the foundation for development of this technology in other forest pathogens. Full article
(This article belongs to the Special Issue Pathogenic Dothideomycete-Plant Interactions)
Show Figures

Figure 1

15 pages, 3652 KiB  
Article
Influence of Light Intensity and Spectrum on Duckweed Growth and Proteins in a Small-Scale, Re-Circulating Indoor Vertical Farm
by Finn Petersen, Johannes Demann, Dina Restemeyer, Hans-Werner Olfs, Heiner Westendarp, Klaus-Juergen Appenroth and Andreas Ulbrich
Plants 2022, 11(8), 1010; https://doi.org/10.3390/plants11081010 - 7 Apr 2022
Cited by 21 | Viewed by 5955
Abstract
Duckweeds can be potentially used in human and animal nutrition, biotechnology or wastewater treatment. To cultivate large quantities of a defined product quality, a standardized production process is needed. A small-scale, re-circulating indoor vertical farm (IVF) with artificial lighting and a nutrient control [...] Read more.
Duckweeds can be potentially used in human and animal nutrition, biotechnology or wastewater treatment. To cultivate large quantities of a defined product quality, a standardized production process is needed. A small-scale, re-circulating indoor vertical farm (IVF) with artificial lighting and a nutrient control and dosing system was used for this purpose. The influence of different light intensities (50, 100 and 150 µmol m−2 s−1) and spectral distributions (red/blue ratios: 70/30, 50/50 and 30/70%) on relative growth rate (RGR), crude protein content (CPC), relative protein yield (RPY) and chlorophyll a of the duckweed species Lemna minor and Wolffiella hyalina were investigated. Increasing light intensity increased RGR (by 67% and 76%) and RPY (by 50% and 89%) and decreased chlorophyll a (by 27% and 32%) for L. minor and W. hyalina, respectively. The spectral distributions had no significant impact on any investigated parameter. Wolffiella hyalina achieved higher values in all investigated parameters compared to L. minor. This investigation proved the successful cultivation of duckweed in a small-scale, re-circulating IVF with artificial lighting. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications)
Show Figures

Figure 1

17 pages, 1330 KiB  
Article
The Dynamics of Phosphorus Uptake and Remobilization during the Grain Development Period in Durum Wheat Plants
by Mohamed El Mazlouzi, Christian Morel, Thierry Robert, Coralie Chesseron, Christophe Salon, Jean-Yves Cornu and Alain Mollier
Plants 2022, 11(8), 1006; https://doi.org/10.3390/plants11081006 - 7 Apr 2022
Cited by 7 | Viewed by 2667
Abstract
Post-anthesis phosphorus (P) uptake and the remobilization of the previously acquired P are the principal sources of grain P nutrition in wheat. However, how the acquired P reaches the grains and its partitioning at the whole plant level remain poorly understood. Here, the [...] Read more.
Post-anthesis phosphorus (P) uptake and the remobilization of the previously acquired P are the principal sources of grain P nutrition in wheat. However, how the acquired P reaches the grains and its partitioning at the whole plant level remain poorly understood. Here, the temporal dynamics of the newly acquired P in durum wheat organs and its allocation to grain were examined using pulse-chase 32P-labeling experiments at 5 and 14 days after anthesis. Durum wheat plants were grown hydroponically under high and low P supplies. Each labeling experiment lasted for 24 h. Plants were harvested 24, 48, and 96 h after labeling. Low and high P treatments significantly affected the allocation of the newly acquired P at the whole plant level. Three days (96 h) after the first 32P-labeling, 8% and 4% of the newly acquired P from exogenous solution were allocated to grains, 73% and 55% to the remainder aboveground organs, and 19% and 41% to the roots at low and high P supplies, respectively. Three days after the second labeling, the corresponding values were 48% and 20% in grains, 44% and 53% in the remainder aboveground organs, and 8% and 27% in roots at low and high P supplies, respectively. These results reveal that the dynamics of P allocation to grain was faster in plants grown under low P supply than under high supply. However, the obtained results also indicate that the origin of P accumulated in durum wheat grains was mainly from P remobilization with little contribution from post-anthesis P uptake. The present study emphasizes the role of vegetative organs as temporary storage of P taken up during the grain filling period before its final allocation to grains. Full article
(This article belongs to the Special Issue Plant Nutrition Volume II)
Show Figures

Graphical abstract

30 pages, 897 KiB  
Review
Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response
by Małgorzata Nykiel, Marta Gietler, Justyna Fidler, Beata Prabucka, Anna Rybarczyk-Płońska, Jakub Graska, Dominika Boguszewska-Mańkowska, Ewa Muszyńska, Iwona Morkunas and Mateusz Labudda
Plants 2022, 11(8), 1009; https://doi.org/10.3390/plants11081009 - 7 Apr 2022
Cited by 18 | Viewed by 3652
Abstract
Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and [...] Read more.
Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals. Full article
(This article belongs to the Special Issue Abiotic Stress Signaling and Responses in Plants)
Show Figures

Graphical abstract

11 pages, 2763 KiB  
Article
Systematic Analysis of the Molecular Mechanisms of Cold and Hot Properties of Herbal Medicines
by Sang-Min Park, Su-Jin Baek, Hyo-Jeong Ban, Hee-Jeong Jin and Seongwon Cha
Plants 2022, 11(7), 997; https://doi.org/10.3390/plants11070997 - 6 Apr 2022
Cited by 7 | Viewed by 2650
Abstract
Effective treatments for patients experiencing temperature-related symptoms are limited. The hot and cold effects of traditional herbal medicines have been utilized to treat and manage these symptoms, but their molecular mechanisms are not fully understood. Previous studies with arbitrarily selected herbs and ingredients [...] Read more.
Effective treatments for patients experiencing temperature-related symptoms are limited. The hot and cold effects of traditional herbal medicines have been utilized to treat and manage these symptoms, but their molecular mechanisms are not fully understood. Previous studies with arbitrarily selected herbs and ingredients may have produced biased results. Here, we aim to systematically elucidate the molecular mechanisms of the hot and cold properties of herbal medicines through an unbiased large-scale investigation of herbal ingredients, their target genes, and the transcriptome signatures induced by them. Using data regarding 243 herbs retrieved from two herbal medicine databases, we statistically identify (R)-Linalool, (-)-alpha-pinene, peruviol, (L)-alpha-terpineol, and cymol as five new hot-specific ingredients that share a common target, a norepinephrine transporter. However, no significant ingredients are cold-specific. We also statistically identify 14 hot- and 8 cold-specific new target genes. Pathway enrichment analysis of hot-specific target genes reveals the associated pathways including neurotransmitter reuptake, cold-induced thermogenesis, blood pressure regulation, adrenergic receptor signaling, and cation symporter activity. Cold-specific target genes are associated with the steroid pathway. Transcriptome analysis also shows that hot herbs are more strongly associated with coagulation and synaptic transmission than cold herbs. Our results, obtained from novel connections between herbal ingredients, target genes, and pathways, may contribute to the development of pharmacological treatment strategies for temperature-related pain using medicinal plants. Full article
(This article belongs to the Special Issue Pharmacological and Toxicological Study of Medicinal Plants)
Show Figures

Figure 1

11 pages, 516 KiB  
Review
Rising Carbon Dioxide and Global Nutrition: Evidence and Action Needed
by Lewis H. Ziska
Plants 2022, 11(7), 1000; https://doi.org/10.3390/plants11071000 - 6 Apr 2022
Cited by 18 | Viewed by 4305
Abstract
While the role of CO2 as a greenhouse gas in the context of global warming is widely acknowledged, additional data from multiple sources is demonstrating that rising CO2 of and by itself will have a tremendous effect on plant biology. This [...] Read more.
While the role of CO2 as a greenhouse gas in the context of global warming is widely acknowledged, additional data from multiple sources is demonstrating that rising CO2 of and by itself will have a tremendous effect on plant biology. This effect is widely recognized for its role in stimulating photosynthesis and growth for multiple plant species, including crops. However, CO2 is also likely to alter plant chemistry in ways that will denigrate plant nutrition. That role is also of tremendous importance, not only from a human health viewpoint, but also from a global food–web perspective. Here, the goal is to review the current evidence, propose potential mechanistic explanations, provide an overview of critical unknowns and to elucidate a series of next steps that can address what is, overall, a critical but unappreciated aspect of anthropogenic climate change. Full article
(This article belongs to the Special Issue The Effect of Carbon Dioxide Concentration on Plant Physiology)
Show Figures

Figure 1

15 pages, 2193 KiB  
Article
Impact of Grazing on Diversity of Semi-Arid Rangelands in Crete Island in the Context of Climatic Change
by Maria Karatassiou, Zoi M. Parissi, Sampson Panajiotidis and Afroditi Stergiou
Plants 2022, 11(7), 982; https://doi.org/10.3390/plants11070982 - 4 Apr 2022
Cited by 5 | Viewed by 2349
Abstract
The rangelands of Crete island (Greece) are typical Mediterranean habitats under high risk of degradation due to long-term grazing and harsh climatic conditions. We explored the effect of abiotic (climatic conditions, altitude) and biotic factors (long-term grazing by small ruminants) on the floristic [...] Read more.
The rangelands of Crete island (Greece) are typical Mediterranean habitats under high risk of degradation due to long-term grazing and harsh climatic conditions. We explored the effect of abiotic (climatic conditions, altitude) and biotic factors (long-term grazing by small ruminants) on the floristic composition and diversity of selected lowland (Pyrathi, Faistos) and highland (Vroulidia, Nida) rangelands. In each rangeland, the ground cover was measured, and the floristic composition was calculated in terms of five functional groups: grasses, legumes, forbs, phrygana, and shrubs. The aridity index, species turnover, species richness, Shannon entropy, and Gini–Simpson index (with the latter two converted to the effective number of species) were calculated. Our results reveal that highlands are characterized by the highest aridity index (wetter conditions). Lowland rangelands, compared to highland, exhibited a higher percentage contribution of grasses, legumes, and forbs, while species turnover decreased along the altitudinal gradient. The Shannon entropy index was correlated (a) positively with Gini–Simpson and mean annual temperature and (b) negatively with mean annual precipitation, aridity index, and altitude. Moreover, the Gini–Simpson index correlated positively with mean annual temperature and negatively with altitude. Our results could help to understand the effects of grazing on rangeland dynamics and sustainability in semi-arid regions in the context of climatic change. Full article
(This article belongs to the Special Issue Mediterranean Plants)
Show Figures

Figure 1

14 pages, 2108 KiB  
Article
Molecular and Pathogenic Characterization of Cylindrocarpon-like Anamorphs Causing Root and Basal Rot of Almonds
by Nieves Capote, María Ángeles Del Río, Juan Francisco Herencia and Francisco Teodoro Arroyo
Plants 2022, 11(7), 984; https://doi.org/10.3390/plants11070984 - 4 Apr 2022
Cited by 7 | Viewed by 2832
Abstract
Three almond nurseries were prospected in the South of Spain (Sevilla) to evaluate the sanitary status of the nursery plant material. Samples consisted of main roots, secondary roots and six-month-old basal stems ‘GxN-15’, ‘Nemaguard’, ‘Cadaman’, ‘Rootpac-40’ and ‘Rootpac-20’ rootstocks planted in the soil, [...] Read more.
Three almond nurseries were prospected in the South of Spain (Sevilla) to evaluate the sanitary status of the nursery plant material. Samples consisted of main roots, secondary roots and six-month-old basal stems ‘GxN-15’, ‘Nemaguard’, ‘Cadaman’, ‘Rootpac-40’ and ‘Rootpac-20’ rootstocks planted in the soil, and twigs of mother plants from ‘Lauranne’, ‘Guara’, ‘Marcona’, ‘Marta’ and ‘Ferragnes’ almond cultivars. Endophytic and potential pathogenic fungi were identified in mother plants and 70 Cylindrocarpon-like anamorph isolates were detected in the root system and basal stems of analyzed rootstocks. Based on partial sequencing of the his3 gene and multilocus phylogenetic analysis of the concatenated ITS, tub2, his3 and tef1-α partial sequences, seven Cylindrocarpon-like anamorph species were identified as Dactylonectria torresensis, D. novozelandica, D. macrodidyma, Ilyonectria liriodendri, Neonectria sp. 1, N. quercicola and Cylindrocladiella variabilis. Pathogenicity was assessed on young healthy detached twigs of ‘Guara’ almond cultivar and one-year-old ‘Lauranne’ potted almonds grafted onto ‘GxN-15’ rootstocks. Among the seven Cylindrocarpon-like anamorph species, I. liriodendri, Neonectria sp. 1 and N. quercicola were the most aggressive. Inoculated detached shoots developed necrotic lesions 15 days after inoculation. Inoculated trees showed sectorized necrosis in the main and secondary roots and the basal stem of the rootstock 5 months after inoculation. The most aggressive species were able to cause necrosis also in the grafted cultivar, and I. liriodendri, and N. quercicola also reduced the root biomass. This is the first report of Cylindrocarpon-like anamorph species causing root and basal rot of almonds. Full article
(This article belongs to the Special Issue New and Re-emerging Plant Diseases and Pathogens)
Show Figures

Figure 1

15 pages, 2110 KiB  
Article
Smart Glass Film Reduced Ascorbic Acid in Red and Orange Capsicum Fruit Cultivars without Impacting Shelf Life
by Xin He, Sachin G. Chavan, Ziad Hamoui, Chelsea Maier, Oula Ghannoum, Zhong-Hua Chen, David T. Tissue and Christopher I. Cazzonelli
Plants 2022, 11(7), 985; https://doi.org/10.3390/plants11070985 - 4 Apr 2022
Cited by 8 | Viewed by 2694
Abstract
Smart Glass Film (SGF) is a glasshouse covering material designed to permit 80% transmission of photosynthetically active light and block heat-generating solar energy. SGF can reduce crop water and nutrient consumption and improve glasshouse energy use efficiency yet can reduce crop yield. The [...] Read more.
Smart Glass Film (SGF) is a glasshouse covering material designed to permit 80% transmission of photosynthetically active light and block heat-generating solar energy. SGF can reduce crop water and nutrient consumption and improve glasshouse energy use efficiency yet can reduce crop yield. The effect of SGF on the postharvest shelf life of fruits remains unknown. Two capsicum varieties, Red (Gina) and Orange (O06614), were cultivated within a glasshouse covered in SGF to assess fruit quality and shelf life during the winter season. SGF reduced cuticle thickness in the Red cultivar (5%) and decreased ascorbic acid in both cultivars (9–14%) without altering the overall morphology of the mature fruits. The ratio of total soluble solids (TSSs) to titratable acidity (TA) was significantly higher in Red (29%) and Orange (89%) cultivars grown under SGF. The Red fruits had a thicker cuticle that reduced water loss and extended shelf life when compared to the Orange fruits, yet neither water loss nor firmness were impacted by SGF. Reducing the storage temperature to 2 °C and increasing relative humidity to 90% extended the shelf life in both cultivars without evidence of chilling injury. In summary, SGF had minimal impact on fruit development and postharvest traits and did not compromise the shelf life of mature fruits. SGF provides a promising technology to block heat-generating solar radiation energy without affecting fruit ripening and marketable quality of capsicum fruits grown during the winter season. Full article
Show Figures

Figure 1

15 pages, 5131 KiB  
Article
Genome-Wide Identification, Expression Pattern and Sequence Variation Analysis of SnRK Family Genes in Barley
by Jiangyan Xiong, Danyi Chen, Tingting Su, Qiufang Shen, Dezhi Wu and Guoping Zhang
Plants 2022, 11(7), 975; https://doi.org/10.3390/plants11070975 - 3 Apr 2022
Cited by 4 | Viewed by 2787
Abstract
Sucrose non-fermenting 1 (SNF1)-related protein kinase (SnRK) is a large family of protein kinases that play a significant role in plant stress responses. Although intensive studies have been conducted on SnRK members in some crops, little is known about the SnRK in barley. [...] Read more.
Sucrose non-fermenting 1 (SNF1)-related protein kinase (SnRK) is a large family of protein kinases that play a significant role in plant stress responses. Although intensive studies have been conducted on SnRK members in some crops, little is known about the SnRK in barley. Using phylogenetic and conserved motif analyses, we discovered 46 SnRK members scattered across barley’s 7 chromosomes and classified them into 3 sub-families. The gene structures of HvSnRKs showed the divergence among three subfamilies. Gene duplication and synteny analyses on the genomes of barley and rice revealed the evolutionary features of HvSnRKs. The promoter regions of HvSnRK family genes contained many ABRE, MBS and LTR elements responding to abiotic stresses, and their expression patterns varied with different plant tissues and abiotic stresses. HvSnRKs could interact with the components of ABA signaling pathway to respond to abiotic stress. Moreover, the haplotypes of HvSnRK2.5 closely associated with drought tolerance were detected in a barley core collection. The current results could be helpful for further exploration of the HvSnRK genes responding to abiotic stress tolerance in barley. Full article
Show Figures

Figure 1

22 pages, 2148 KiB  
Review
Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management
by Amanda Kim Rico-Chávez, Jesus Alejandro Franco, Arturo Alfonso Fernandez-Jaramillo, Luis Miguel Contreras-Medina, Ramón Gerardo Guevara-González and Quetzalcoatl Hernandez-Escobedo
Plants 2022, 11(7), 970; https://doi.org/10.3390/plants11070970 - 2 Apr 2022
Cited by 29 | Viewed by 5680
Abstract
Plant stress is one of the most significant factors affecting plant fitness and, consequently, food production. However, plant stress may also be profitable since it behaves hormetically; at low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites [...] Read more.
Plant stress is one of the most significant factors affecting plant fitness and, consequently, food production. However, plant stress may also be profitable since it behaves hormetically; at low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites and additional stress tolerance. The controlled exposure of crops to low doses of stressors is therefore called hormesis management, and it is a promising method to increase crop productivity and quality. Nevertheless, hormesis management has severe limitations derived from the complexity of plant physiological responses to stress. Many technological advances assist plant stress science in overcoming such limitations, which results in extensive datasets originating from the multiple layers of the plant defensive response. For that reason, artificial intelligence tools, particularly Machine Learning (ML) and Deep Learning (DL), have become crucial for processing and interpreting data to accurately model plant stress responses such as genomic variation, gene and protein expression, and metabolite biosynthesis. In this review, we discuss the most recent ML and DL applications in plant stress science, focusing on their potential for improving the development of hormesis management protocols. Full article
(This article belongs to the Special Issue Plant Computational Biology)
Show Figures

Figure 1

15 pages, 53581 KiB  
Article
Effect of Sucrose on Growth and Stress Status of Castanea sativa x C. crenata Shoots Cultured in Liquid Medium
by Diego Gago, María Ángeles Bernal, Conchi Sánchez, Anxela Aldrey, Beatriz Cuenca, Colin Bruce Christie and Nieves Vidal
Plants 2022, 11(7), 965; https://doi.org/10.3390/plants11070965 - 1 Apr 2022
Cited by 15 | Viewed by 3030
Abstract
Current breeding programs aim to increase the number of ink-tolerant chestnut trees using vegetative propagation of selected genotypes. However, the commercial vegetative propagation of chestnut species is still a bottleneck for the forest industry, mainly due to problems in the rooting and acclimation [...] Read more.
Current breeding programs aim to increase the number of ink-tolerant chestnut trees using vegetative propagation of selected genotypes. However, the commercial vegetative propagation of chestnut species is still a bottleneck for the forest industry, mainly due to problems in the rooting and acclimation of propagules. This study aimed to explore the potential benefits of decreasing sucrose supplementation during chestnut micropropagation. Explants were cultured with high light intensity and CO2-enriched air in temporary or continuous immersion bioreactors and with different sucrose supplementation to evaluate the impact of these treatments on growth, rooting and physiological status (monosaccharide content, soluble phenolics and antioxidant activity). The proliferation and rooting performance of shoots cultured by continuous immersion decreased sharply with sucrose concentrations lower than 1%, whereas shoots cultured by temporary immersion grew and rooted successfully with 0.5% sucrose. These results suggest this system is appropriate to culture chestnut with low sucrose concentration and to explore photoautotrophic propagation of this species. Full article
(This article belongs to the Special Issue Application of Biotechnology to Woody Propagation)
Show Figures

Graphical abstract

21 pages, 1416 KiB  
Review
Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants
by Boas Pucker and Dirk Selmar
Plants 2022, 11(7), 963; https://doi.org/10.3390/plants11070963 - 1 Apr 2022
Cited by 31 | Viewed by 12307
Abstract
Flavonoids are a biochemically diverse group of specialized metabolites in plants that are derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved across species and well characterized, numerous species-specific decoration steps and their relevance remained largely unexplored. The flavonoid [...] Read more.
Flavonoids are a biochemically diverse group of specialized metabolites in plants that are derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved across species and well characterized, numerous species-specific decoration steps and their relevance remained largely unexplored. The flavonoid biosynthesis takes place at the cytosolic side of the endoplasmatic reticulum (ER), but accumulation of various flavonoids was observed in the central vacuole. A universal explanation for the subcellular transport of flavonoids has eluded researchers for decades. Current knowledge suggests that a glutathione S-transferase-like protein (ligandin) protects anthocyanins and potentially proanthocyanidin precursors during the transport to the central vacuole. ABCC transporters and to a lower extend MATE transporters sequester anthocyanins into the vacuole. Glycosides of specific proanthocyanidin precursors are sequestered through MATE transporters. A P-ATPase in the tonoplast and potentially other proteins generate the proton gradient that is required for the MATE-mediated antiport. Vesicle-mediated transport of flavonoids from the ER to the vacuole is considered as an alternative or additional route. Full article
(This article belongs to the Special Issue Evolution of Specialized Metabolism in Plants)
Show Figures

Figure 1

15 pages, 3131 KiB  
Article
Metabolomic Profiling of Citrus unshiu during Different Stages of Fruit Development
by Sang Suk Kim, Hyun-Jin Kim, Kyung Jin Park, Seok Beom Kang, YoSup Park, Seong-Gab Han, Misun Kim, Yeong Hun Song and Dong-Shin Kim
Plants 2022, 11(7), 967; https://doi.org/10.3390/plants11070967 - 1 Apr 2022
Cited by 20 | Viewed by 3207
Abstract
Citrus fruits undergo significant metabolic profile changes during their development process. However, limited information is available on the changes in the metabolites of Citrus unshiu during fruit development. Here, we analyzed the total phenolic content (TPC), total carotenoid content (TCC), antioxidant activity, and [...] Read more.
Citrus fruits undergo significant metabolic profile changes during their development process. However, limited information is available on the changes in the metabolites of Citrus unshiu during fruit development. Here, we analyzed the total phenolic content (TPC), total carotenoid content (TCC), antioxidant activity, and metabolite profiles in C. unshiu fruit flesh during different stages of fruit development and evaluated their correlations. The TPC and antioxidant activity significantly decreased during fruit development, whereas the TCC increased. The metabolite profiles, including sugars, acidic compounds, amino acids, flavonoids, limonoids, carotenoids, and volatile compounds (mono- and sesquiterpenes), in C. unshiu fruit flesh also changed significantly, and a citrus metabolomic pathway related to fruit development was proposed. Based on the data, C. unshiu fruit development was classified into three groups: Group 1 (Aug. 1), Group 2 (Aug. 31 and Sep. 14), and Group 3 (Oct. 15 and Nov. 16). Although citrus peel was not analyzed and the sensory and functional qualities during fruit development were not investigated, the results of this study will help in our understanding of the changes in chemical profile during citrus fruit development. This can provide vital information for various applications in the C. unshiu industry. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 1620 KiB  
Article
Chemical Composition, Antioxidant, and Antimicrobial Activity of Dracocephalum moldavica L. Essential Oil and Hydrolate
by Milica Aćimović, Olja Šovljanski, Vanja Šeregelj, Lato Pezo, Valtcho D. Zheljazkov, Jovana Ljujić, Ana Tomić, Gordana Ćetković, Jasna Čanadanović-Brunet, Ana Miljković and Ljubodrag Vujisić
Plants 2022, 11(7), 941; https://doi.org/10.3390/plants11070941 - 31 Mar 2022
Cited by 25 | Viewed by 2978
Abstract
Steam distillation was used for the isolation of Dracocephalum moldavica L. (Moldavian dragonhead) essential oil (DMEO). This aromatic herbaceous plant is widespread across the Northern Hemisphere regions and has been utilized in health-improving studies and applications. In addition to the DMEO, the hydrolate [...] Read more.
Steam distillation was used for the isolation of Dracocephalum moldavica L. (Moldavian dragonhead) essential oil (DMEO). This aromatic herbaceous plant is widespread across the Northern Hemisphere regions and has been utilized in health-improving studies and applications. In addition to the DMEO, the hydrolate (DMH), a byproduct of the distillation process, was also collected. The DMEO and DMH were analyzed and compared in terms of their chemical composition, as well as their in vitro biological activities. The main component in DMEO was geranyl acetate, while geranial was dominant in DMH. The DMEO demonstrated better antioxidant and antimicrobial activities compared with the DMH against Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, which represent sources of food-borne illness at the global level. The DMEO and DMH show promise as antioxidant and antimicrobial additives to various products. Full article
Show Figures

Figure 1

22 pages, 1423 KiB  
Review
Genetic Characteristics and Metabolic Interactions between Pseudocercospora fijiensis and Banana: Progress toward Controlling Black Sigatoka
by Roslyn D. Noar, Elizabeth Thomas and Margaret E. Daub
Plants 2022, 11(7), 948; https://doi.org/10.3390/plants11070948 - 31 Mar 2022
Cited by 10 | Viewed by 5081
Abstract
The international importance of banana and severity of black Sigatoka disease have led to extensive investigations into the genetic characteristics and metabolic interactions between the Dothideomycete Pseudocercospora fijiensis and its banana host. P. fijiensis was shown to have a greatly expanded genome compared [...] Read more.
The international importance of banana and severity of black Sigatoka disease have led to extensive investigations into the genetic characteristics and metabolic interactions between the Dothideomycete Pseudocercospora fijiensis and its banana host. P. fijiensis was shown to have a greatly expanded genome compared to other Dothideomycetes, due to the proliferation of retrotransposons. Genome analysis suggests the presence of dispensable chromosomes that may aid in fungal adaptation as well as pathogenicity. Genomic research has led to the characterization of genes and metabolic pathways involved in pathogenicity, including: secondary metabolism genes such as PKS10-2, genes for mitogen-activated protein kinases such as Fus3 and Slt2, and genes for cell wall proteins such as glucosyl phosphatidylinositol (GPI) and glycophospholipid surface (Gas) proteins. Studies conducted on resistance mechanisms in banana have documented the role of jasmonic acid and ethylene pathways. With the development of banana transformation protocols, strategies for engineering resistance include transgenes expressing antimicrobial peptides or hydrolytic enzymes as well as host-induced gene silencing (HIGS) targeting pathogenicity genes. Pseudocercospora fijiensis has been identified as having high evolutionary potential, given its large genome size, ability to reproduce both sexually and asexually, and long-distance spore dispersal. Thus, multiple control measures are needed for the sustainable control of black Sigatoka disease. Full article
(This article belongs to the Special Issue Pathogenic Dothideomycete-Plant Interactions)
Show Figures

Figure 1

17 pages, 2067 KiB  
Article
Supercritical Fluid and Conventional Extractions of High Value-Added Compounds from Pomegranate Peels Waste: Production, Quantification and Antimicrobial Activity of Bioactive Constituents
by Kaja Kupnik, Maja Leitgeb, Mateja Primožič, Vesna Postružnik, Petra Kotnik, Nika Kučuk, Željko Knez and Maša Knez Marevci
Plants 2022, 11(7), 928; https://doi.org/10.3390/plants11070928 - 30 Mar 2022
Cited by 20 | Viewed by 2924
Abstract
This study is focused on different extractions (Cold Maceration (CM), Ultrasonic Extraction (UE), Soxhlet Extraction (SE) and Supercritical Fluid Extraction (SFE)) of bioactive compounds from pomegranate (Punica Granatum L.) fruit peels using methanol, ethanol, and acetone as solvents in conventional extractions and [...] Read more.
This study is focused on different extractions (Cold Maceration (CM), Ultrasonic Extraction (UE), Soxhlet Extraction (SE) and Supercritical Fluid Extraction (SFE)) of bioactive compounds from pomegranate (Punica Granatum L.) fruit peels using methanol, ethanol, and acetone as solvents in conventional extractions and changing operating pressure (10, 15, 20, 25 MPa) in SFE, respectively. The extraction yields, total phenols (TP) and proanthocyanidins (PAC) contents, and antioxidant activity of different extracts are revealed. TP and PAC recovered by extracts ranged from 24.22 to 42.92 mg gallic acid equivalents (GAE)/g and 2.01 to 5.82 mg PAC/g, respectively. The antioxidant activity of extracts ranged from 84.70% to 94.35%. The phenolic compound identification and quantification in selective extracts was done using the LC-MS/MS method. The contents of different flavonoids and phenolic acids have been determined. SFE extract, obtained at 20 MPa, contained the highest content (11,561.84 μg/g) of analyzed total polyphenols, with predominant ellagic acid (7492.53 μg/g). For the first time, Microbial Growth Inhibition Rates (MGIRs) were determined at five different concentrations of pomegranate SFE extract against seven microorganisms. Minimal Inhibitory Concentration (MIC90) was determined as 2.7 mg/mL of SFE pomegranate peel extract in the case of five different Gram-negative and Gram-positive bacteria. Full article
(This article belongs to the Special Issue Trends in Plants Phytochemistry and Bioactivity Analysis)
Show Figures

Graphical abstract

13 pages, 3102 KiB  
Article
Hydrogen Sulfide Promotes Adventitious Root Development in Cucumber under Salt Stress by Enhancing Antioxidant Ability
by Yayu Liu, Lijuan Wei, Li Feng, Meiling Zhang, Dongliang Hu, Jianzhong Tie and Weibiao Liao
Plants 2022, 11(7), 935; https://doi.org/10.3390/plants11070935 - 30 Mar 2022
Cited by 25 | Viewed by 2231
Abstract
As a gas signal molecule, hydrogen sulfide (H2S) can enhance plant stress resistance. Here, cucumber (Cucumis sativus ‘Xinchun NO. 4’) explants were used to investigate the role of H2S in adventitious root development under salt stress. The results [...] Read more.
As a gas signal molecule, hydrogen sulfide (H2S) can enhance plant stress resistance. Here, cucumber (Cucumis sativus ‘Xinchun NO. 4’) explants were used to investigate the role of H2S in adventitious root development under salt stress. The results show that sodium chloride (NaCl) at 10 mM produced moderate salt stress. The 100 µM sodium hydrosulfide (NaHS) treatment, a H2S donor, increased root number and root length by 38.37% and 66.75%, respectively, indicating that H2S effectively promoted the occurrence of adventitious roots in cucumber explants under salt stress. The results show that under salt stress, NaHS treatment reduced free proline content and increased the soluble sugar and soluble protein content during rooting. Meanwhile, NaHS treatment enhanced the activities of antioxidant enzymes [peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT)], increased the content of ascorbic (ASA) and glutathione (GSH), reduced the content of hydrogen peroxide (H2O2) and the rate of superoxide radical (O2−) production, and decreased relative electrical conductivity (REC) and the content of malondialdehyde (MDA). However, the NaHS scavenger hypotaurine (HT) reversed the above effects of NaHS under salt stress. In summary, H2S promoted adventitious root development under salt stress through regulating osmotic substance content and enhancing antioxidant ability in explants. Full article
(This article belongs to the Special Issue Regulation of Abiotic Stress Responses in Vegetable Crops)
Show Figures

Figure 1

17 pages, 807 KiB  
Review
Drought Stress Responses: Coping Strategy and Resistance
by Hanna Bandurska
Plants 2022, 11(7), 922; https://doi.org/10.3390/plants11070922 - 29 Mar 2022
Cited by 65 | Viewed by 7327
Abstract
Plants’ resistance to stress factors is a complex trait that is a result of changes at the molecular, metabolic, and physiological levels. The plant resistance strategy means the ability to survive, recover, and reproduce under adverse conditions. Harmful environmental factors affect the state [...] Read more.
Plants’ resistance to stress factors is a complex trait that is a result of changes at the molecular, metabolic, and physiological levels. The plant resistance strategy means the ability to survive, recover, and reproduce under adverse conditions. Harmful environmental factors affect the state of stress in plant tissues, which creates a signal triggering metabolic events responsible for resistance, including avoidance and/or tolerance mechanisms. Unfortunately, the term ‘stress resistance’ is often used in the literature interchangeably with ‘stress tolerance’. This paper highlights the differences between the terms ‘stress tolerance’ and ‘stress resistance’, based on the results of experiments focused on plants’ responses to drought. The ability to avoid or tolerate dehydration is crucial in the resistance to drought at cellular and tissue levels (biological resistance). However, it is not necessarily crucial in crop resistance to drought if we take into account agronomic criteria (agricultural resistance). For the plant user (farmer, grower), resistance to stress means not only the ability to cope with a stress factor, but also the achievement of a stable yield and good quality. Therefore, it is important to recognize both particular plant coping strategies (stress avoidance, stress tolerance) and their influence on the resistance, assessed using well-defined criteria. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

32 pages, 4928 KiB  
Article
A Comprehensive Phytochemical Analysis of Terpenes, Polyphenols and Cannabinoids, and Micromorphological Characterization of 9 Commercial Varieties of Cannabis sativa L.
by Eugenia Mazzara, Jacopo Torresi, Gelsomina Fico, Alessio Papini, Nicola Kulbaka, Stefano Dall’Acqua, Stefania Sut, Stefania Garzoli, Ahmed M. Mustafa, Loredana Cappellacci, Dennis Fiorini, Filippo Maggi, Claudia Giuliani and Riccardo Petrelli
Plants 2022, 11(7), 891; https://doi.org/10.3390/plants11070891 - 27 Mar 2022
Cited by 21 | Viewed by 7055
Abstract
New hemp (Cannabis sativa L.) strains developed by crossbreeding selected varieties represent a novel research topic worthy of attention and investigation. This study focused on the phytochemical characterization of nine hemp commercial cultivars. Hydrodistillation was performed in order to collect the essential [...] Read more.
New hemp (Cannabis sativa L.) strains developed by crossbreeding selected varieties represent a novel research topic worthy of attention and investigation. This study focused on the phytochemical characterization of nine hemp commercial cultivars. Hydrodistillation was performed in order to collect the essential oils (EO), and also the residual water and deterpenated biomass. The volatile fraction was analyzed by GC-FID, GC-MS, and SPME-GC-MS, revealing three main chemotypes. The polyphenolic profile was studied in the residual water and deterpenated biomass by spectrophotometric assays, and HPLC-DAD-MSn and 1H-NMR analyses. The latter were employed for quali–quantitative determination of cannabinoids in the deterpenated material in comparison with the one not subjected to hydrodistillation. In addition, the glandular and non-glandular indumentum of the nine commercial varieties was studied by means of light microscopy and scanning electron microscopy in the attempt to find a possible correlation with the phytochemical and morphological traits. The EO and residual water were found to be rich in monoterpene and sesquiterpene hydrocarbons, and flavonol glycosides, respectively, while the deterpenated material was found to be a source of neutral cannabinoids. The micromorphological survey allowed us to partly associate the phytochemistry of these varieties with the hair morphotypes. This research sheds light on the valorization of different products from the hydrodistillation of hemp varieties, namely, essential oil, residual water, and deterpenated biomass, which proved to be worthy of exploitation in industrial and health applications. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

18 pages, 5375 KiB  
Article
Exogenous Melatonin Activates Antioxidant Systems to Increase the Ability of Rice Seeds to Germinate under High Temperature Conditions
by Yufeng Yu, Liyuan Deng, Lu Zhou, Guanghui Chen and Yue Wang
Plants 2022, 11(7), 886; https://doi.org/10.3390/plants11070886 - 25 Mar 2022
Cited by 28 | Viewed by 2713
Abstract
High temperatures are a major concern that limit rice germination and plant growth. Although previous studies found that melatonin can promote seed germination, the physiological regulation mechanism by which exogenous melatonin mediates high temperature tolerance during rice seed germination is still largely unknown. [...] Read more.
High temperatures are a major concern that limit rice germination and plant growth. Although previous studies found that melatonin can promote seed germination, the physiological regulation mechanism by which exogenous melatonin mediates high temperature tolerance during rice seed germination is still largely unknown. In order to overcome these challenges, the present study investigates the effects of melatonin on the characteristics of rice seed germination as well as on antioxidant properties, under different high temperature conditions. The results show that 100 μM melatonin seed-soaking treatment under high temperature conditions effectively improves the germination potential, the germination index, and the vigor index of rice seeds; increases the length of the shoot and the root; improves the activity of the antioxidant enzymes; and significantly reduces the malondialdehyde content. The gray relational grade of the shoot peroxidase activity and the melatonin soaking treatment was the highest, which was used to evaluate the effect of melatonin on the heat tolerance of rice. The subordinate function method was used to comprehensively evaluate the tolerance, and the results show that the critical concentration of melatonin is 100 μM, and the critical interactive treatment is the germination at 38 °C and followed by the recovery at 26 °C for 1 day + 100 μM. In conclusion, 100 μM of melatonin concentration improved the heat resistance of rice seeds by enhancing the activity of the antioxidant enzymes. Full article
Show Figures

Figure 1

24 pages, 5556 KiB  
Article
Antioxidant Capacity of Potentilla paradoxa Nutt. and Its Beneficial Effects Related to Anti-Aging in HaCaT and B16F10 Cells
by Hwa Pyoung Lee, Dong Seon Kim, Sang Hee Park, Chae Yun Shin, Jin Joo Woo, Ji Won Kim, Ren-Bo An, Changyoung Lee and Jae Youl Cho
Plants 2022, 11(7), 873; https://doi.org/10.3390/plants11070873 - 24 Mar 2022
Cited by 14 | Viewed by 3861
Abstract
Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as [...] Read more.
Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as a traditional medicinal herb in China and has recently been shown to have anti-inflammatory effects. Despite the biological and pharmacological potential of Potentilla paradoxa Nutt., its skin anti-aging effects remain unclear. Therefore, this study evaluated the free radical scavenging, moisturizing, anti-melanogenic, and wound-healing effects of an ethanol extract of Potentilla paradoxa Nutt. (Pp-EE). Pp-EE was found to contain phenolics and flavonoids and exhibits in vitro antioxidant activities. α-Linolenic acid was found to be a major component of Pp-EE on gas chromatography-mass spectrometry. Pp-EE promoted the expression of hyaluronic acid (HA) synthesis-related enzymes and suppressed the expression of HA degradation-related enzymes in keratinocytes, so it may increase skin hydration. Pp-EE also showed inhibitory effects on the production and secretion of melanin in melanocytes. In a scratch assay, Pp-EE improved skin wound healing. Taken together, Pp-EE has several effects that may delay skin aging, suggesting its potential benefits as a natural ingredient in cosmetic or pharmaceutical products. Full article
(This article belongs to the Special Issue Bioprospecting of Natural Products from Medicinal Plants)
Show Figures

Figure 1

20 pages, 3336 KiB  
Review
Fungal Pathogenesis-Related Cell Wall Biogenesis, with Emphasis on the Maize Anthracnose Fungus Colletotrichum graminicola
by Alan de Oliveira Silva, Lala Aliyeva-Schnorr, Stefan G. R. Wirsel and Holger B. Deising
Plants 2022, 11(7), 849; https://doi.org/10.3390/plants11070849 - 23 Mar 2022
Cited by 19 | Viewed by 3569
Abstract
The genus Colletotrichum harbors many plant pathogenic species, several of which cause significant yield losses in the field and post harvest. Typically, in order to infect their host plants, spores germinate, differentiate a pressurized infection cell, and display a hemibiotrophic lifestyle after plant [...] Read more.
The genus Colletotrichum harbors many plant pathogenic species, several of which cause significant yield losses in the field and post harvest. Typically, in order to infect their host plants, spores germinate, differentiate a pressurized infection cell, and display a hemibiotrophic lifestyle after plant invasion. Several factors required for virulence or pathogenicity have been identified in different Colletotrichum species, and adaptation of cell wall biogenesis to distinct stages of pathogenesis has been identified as a major pre-requisite for the establishment of a compatible parasitic fungus–plant interaction. Here, we highlight aspects of fungal cell wall biogenesis during plant infection, with emphasis on the maize leaf anthracnose and stalk rot fungus, Colletotrichum graminicola. Full article
(This article belongs to the Special Issue Interactions between Colletotrichum Species and Plants Ⅱ)
Show Figures

Figure 1

18 pages, 1016 KiB  
Article
Salt Stress Differentially Affects the Primary and Secondary Metabolism of Peppers (Capsicum annuum L.) According to the Genotype, Fruit Part, and Salinity Level
by Tilen Zamljen, Aljaz Medic, Metka Hudina, Robert Veberic and Ana Slatnar
Plants 2022, 11(7), 853; https://doi.org/10.3390/plants11070853 - 23 Mar 2022
Cited by 31 | Viewed by 3010
Abstract
A total of four Capsicum annuum L. genotypes (‘Caro F1’, ‘Berenyi F1’, ‘Somborka’ and ‘Novosadka’) were exposed to two intensities of salt stress. We observed a significant decrease in the sugar content in all salt stressed treatments, except for the sucrose content of [...] Read more.
A total of four Capsicum annuum L. genotypes (‘Caro F1’, ‘Berenyi F1’, ‘Somborka’ and ‘Novosadka’) were exposed to two intensities of salt stress. We observed a significant decrease in the sugar content in all salt stressed treatments, except for the sucrose content of the pericarp of the ‘Caro F1’ cultivar. Salt stress had a largely negative effect on the total and individual organic acid content, although the effect differed among cultivars. Using high performance liquid chromatography coupled with a mass spectrometer, most phenolics were identified in the pericarp (18), followed by the placenta (7) and seeds (8). Treatment with 40 mM NaCl caused the highest increase in individual phenols, followed by treatment with 20 mM NaCl. The cultivar ‘Berenyi F1’ was less affected by salt stress treatment than the other three cultivars in terms of content of individual and total phenols. Salt stress increased the content of capsaicinoids in all the cultivars. The pericarp of the cultivar ‘Novosadka’ showed 17.5 and 50 times higher total capsaicinoid content than the control in the 20 mM and 40 mM NaCl, respectively. With the results of several metabolite groups, we confirmed that the reaction and metabolic content to salt stress within the genus Capsicum is genotype-, fruit part-, and salinity level-dependent. Full article
(This article belongs to the Special Issue Salinity Stress Tolerance in Plants)
Show Figures

Figure 1

23 pages, 5011 KiB  
Review
The Grapevine Microbiome to the Rescue: Implications for the Biocontrol of Trunk Diseases
by Rebeca Cobos, Ana Ibañez, Alba Diez-Galán, Carla Calvo-Peña, Seyedehtannaz Ghoreshizadeh and Juan José R. Coque
Plants 2022, 11(7), 840; https://doi.org/10.3390/plants11070840 - 22 Mar 2022
Cited by 25 | Viewed by 4101
Abstract
Grapevine trunk diseases (GTDs) are one of the most devastating pathologies that threaten the survival and profitability of vineyards around the world. Progressive banning of chemical pesticides and their withdrawal from the market has increased interest in the development of effective biocontrol agents [...] Read more.
Grapevine trunk diseases (GTDs) are one of the most devastating pathologies that threaten the survival and profitability of vineyards around the world. Progressive banning of chemical pesticides and their withdrawal from the market has increased interest in the development of effective biocontrol agents (BCAs) for GTD treatment. In recent years, considerable progress has been made regarding the characterization of the grapevine microbiome, including the aerial part microbiome (flowers, berries and leaves), the wood microbiome, the root environment and vineyard soil microbiomes. In this work, we review these advances especially in relation to the etiology and the understanding of the composition of microbial populations in plants affected by GTDs. We also discuss how the grapevine microbiome is becoming a source for the isolation and characterization of new, more promising BCAs that, in the near future, could become effective tools for controlling these pathologies. Full article
(This article belongs to the Special Issue Vine Crops Diseases and Their Management)
Show Figures

Figure 1

26 pages, 2761 KiB  
Review
Chemical Diversity of Flavan-3-Ols in Grape Seeds: Modulating Factors and Quality Requirements
by Guillermo F. Padilla-González, Esther Grosskopf, Nicholas J. Sadgrove and Monique S. J. Simmonds
Plants 2022, 11(6), 809; https://doi.org/10.3390/plants11060809 - 18 Mar 2022
Cited by 22 | Viewed by 3165
Abstract
Grape seeds are a rich source of flavan-3-ol monomers, oligomers, and polymers. The diverse profile of compounds includes mainly B-type procyanidins (especially C4→C8 linked molecules) and the key monomers, catechin, and epicatechin that are positively implicated in the ‘French Paradox’. Today grape seed [...] Read more.
Grape seeds are a rich source of flavan-3-ol monomers, oligomers, and polymers. The diverse profile of compounds includes mainly B-type procyanidins (especially C4→C8 linked molecules) and the key monomers, catechin, and epicatechin that are positively implicated in the ‘French Paradox’. Today grape seed nutraceuticals have become a multi-million-dollar industry. This has created incentives to elucidate the variations in chemistry across cultivars, to identify signs of adulteration, and to understand the intrinsic and extrinsic factors controlling the expression of metabolites in the seeds’ metabolome. This review provides a critical overview of the existing literature on grape seed chemistry. Although the biosynthetic pathways for polymeric procyanidins in seeds have not yet been explained, abiotic factors have been shown to modulate associated genes. Research of extrinsic factors has demonstrated that the control of procyanidin expression is strongly influenced, in order of importance, by genotype (species first, then variety) and environment, as claimed anecdotally. Unfortunately, research outcomes on the effects of abiotic factors have low certainty, because effects can be specific to genotype or variety, and there is limited control over physical metrics in the field. Thus, to gain a fuller understanding of the effects of abiotic factors and biosynthetic pathways, and realise potential for optimisation, a more fundamental research approach is needed. Nevertheless, the current synthesis offers insight into the selection of species or varieties according to the profile of polyphenols, as well as for optimisation of horticultural practices, with a view to produce products that contain the compounds that support health claims. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

24 pages, 2102 KiB  
Review
Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View
by Natalia Borowska-Zuchowska, Magdalena Senderowicz, Dana Trunova and Bozena Kolano
Plants 2022, 11(6), 784; https://doi.org/10.3390/plants11060784 - 16 Mar 2022
Cited by 6 | Viewed by 3420
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the [...] Read more.
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics. Full article
(This article belongs to the Special Issue Plant Evolutionary Cytogenetics)
Show Figures

Figure 1

31 pages, 1230 KiB  
Review
Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate
by Dhurba Neupane, Richard H. Lohaus, Juan K. Q. Solomon and John C. Cushman
Plants 2022, 11(6), 772; https://doi.org/10.3390/plants11060772 - 14 Mar 2022
Cited by 34 | Viewed by 5840
Abstract
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable [...] Read more.
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing “camelina” from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

14 pages, 2619 KiB  
Article
Inflorescence Transcriptome Sequencing and Development of New EST-SSR Markers in Common Buckwheat (Fagopyrum esculentum)
by Yang Liu, Xiaomei Fang, Tian Tang, Yudong Wang, Yinhuan Wu, Jinyu Luo, Haotian Wu, Yingqian Wang, Jian Zhang, Renwu Ruan, Meiliang Zhou, Kaixuan Zhang and Zelin Yi
Plants 2022, 11(6), 742; https://doi.org/10.3390/plants11060742 - 10 Mar 2022
Cited by 8 | Viewed by 2496
Abstract
Common buckwheat (Fagopyrum esculentum M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers. In this study, Illumina HiSeq 4000 high-throughput sequencing technology [...] Read more.
Common buckwheat (Fagopyrum esculentum M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers. In this study, Illumina HiSeq 4000 high-throughput sequencing technology was used to sequence the transcriptome of green-flower common buckwheat (Gr) with coarse pedicels and white-flower Ukrainian daliqiao (UD) with fine pedicels. A total of 118,448 unigenes were obtained, with an average length of 1248 bp and an N50 of 1850 bp. A total of 39,432 differentially expressed genes (DEGs) were identified, and the DEGs of the porphyrins and chlorophyll metabolic pathway had significantly upregulated expression in Gr. Then, a total of 17,579 sequences containing SSR loci were detected, and 20,756 EST-SSR loci were found. The distribution frequency of EST-SSR in the transcriptome was 17.52%, and the average distribution density was 8.21 kb. A total of 224 pairs of primers were randomly selected for synthesis; 35 varieties of common buckwheat and 13 varieties of Tartary buckwheat were verified through these primers. The clustering results well verified the previous conclusion that common buckwheat and Tartary buckwheat had a distant genetic relationship. The EST-SSR markers identified and developed in this study will be helpful to enrich the transcriptome information and marker-assisted selection breeding of buckwheat. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 2780 KiB  
Article
Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach
by Inês L. Cabral, António Teixeira, Arnaud Lanoue, Marianne Unlubayir, Thibaut Munsch, Joana Valente, Fernando Alves, Pedro Leal da Costa, Frank S. Rogerson, Susana M. P. Carvalho, Hernâni Gerós and Jorge Queiroz
Plants 2022, 11(6), 732; https://doi.org/10.3390/plants11060732 - 9 Mar 2022
Cited by 9 | Viewed by 3100
Abstract
The introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies. Here, we aimed to perform a robust analysis in three [...] Read more.
The introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies. Here, we aimed to perform a robust analysis in three consecutive vintages (2018, 2019, and 2020) on the impact of deficit irrigation on the yield, berry quality traits, and metabolome of cv. ‘Touriga Nacional’. Results showed that in the peaks of extreme drought, irrigation at 30% crop evapotranspiration (ETc) (R30) was able to prevent a decay of up to 0.4 MPa of leaf predawn water potential (ΨPd), but irrigation at 70% ETc (R70) did not translate into additional protection against drought stress. Following three seasons of irrigation, the yield was significantly improved in vines irrigated at R30, whereas irrigation at R70 positively affected the yield only in the 2020 season. Berry quality traits at harvest were not significantly changed by irrigation, except for Total Soluble Solids (TSS) in 2018. A UPLC–MS-based targeted metabolomic analysis identified eight classes of compounds, amino acids, phenolic acids, stilbenoid DP1, stilbenoid DP2, flavonols, flavan-3-ols, di-OH- and tri-OH anthocyanins, and showed that anthocyanins and phenolic acids did not change significantly with irrigation. The present study showed that deficit irrigation partially mitigated the severe summer water deficit conditions in the DDR but did not significantly change key metabolites. Full article
Show Figures

Figure 1

17 pages, 10916 KiB  
Article
Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China
by Shifa Xiong, Yangdong Wang, Yicun Chen, Ming Gao, Yunxiao Zhao and Liwen Wu
Plants 2022, 11(5), 679; https://doi.org/10.3390/plants11050679 - 2 Mar 2022
Cited by 31 | Viewed by 3448
Abstract
Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. To ensure the survival of seedlings, we first need to understand the differences in drought resistance of the four oak species [...] Read more.
Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. To ensure the survival of seedlings, we first need to understand the differences in drought resistance of the four oak species at the seedling stage, and comprehensively evaluate their drought resistance capabilities. The four oak seedlings were divided into drought-rewatering treatment group and well watered samples (control group). For the seedlings of the drought-rewatering treatment group, drought stress lasting 31 days was used, and then re-watering for 5 days. The water parameters, osmotic solutes content, antioxidant enzyme activity and photosynthesis parameters of the seedlings in the two groups were measured every 5 days. Compared with the control group, the relative water content, water potential, net photosynthetic rate, transpiration rate, and stomatal conductance levels of the four oaks all showed a downward trend under continuous drought stress, and showed an upward trend after rehydration. The soluble protein, soluble sugar, proline, peroxidase, superoxide dismutase and catalase content of the four oaks increased first and then decreased under drought stress, and then increased after rehydration. The content of glycine betaine and malondialdehyde continued to increase, and gradually decreased after rehydration. The weight of each index was calculated by principal component analysis, and then the comprehensive evaluation of each index was carried out through the membership function method. The drought resistance levels of the four oak species were as follows: Q. serrata > Q. fabri > Q. variabilis > Q. acutissima. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 7077 KiB  
Article
Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis
by Jingbao Liu, Linna Zhang, Lu Huang, Tianxiao Yang, Juan Ma, Ting Yu, Weihong Zhu, Zhanhui Zhang and Jihua Tang
Plants 2022, 11(5), 677; https://doi.org/10.3390/plants11050677 - 1 Mar 2022
Cited by 16 | Viewed by 2880
Abstract
Maize is an important cereal crop but is sensitive to heat stress, which significantly restricts its grain yield. To explore the molecular mechanism of maize heat tolerance, a heat-tolerant hybrid ZD309 and its parental lines (H39_1 and M189) were subjected to heat stress, [...] Read more.
Maize is an important cereal crop but is sensitive to heat stress, which significantly restricts its grain yield. To explore the molecular mechanism of maize heat tolerance, a heat-tolerant hybrid ZD309 and its parental lines (H39_1 and M189) were subjected to heat stress, followed by transcriptomic and metabolomic analyses. After six-day-heat treatment, the growth of ZD309 and its parental lines were suppressed, showing dwarf stature and rolled leaf compared with the control plants. ZD309 exhibited vigorous growth; however, M189 displayed superior heat tolerance. By transcriptomic and metabolomic analysis, hundreds to thousands of differentially expressed genes (DEGs) and metabolites (DEMs) were identified. Notably, the female parent H39 shares more DEGs and DEMs with the hybrid ZD309, indicating more genetic gain derived from the female instead of the male. A total of 299 heat shock genes detected among three genotypes were greatly aggregated in sugar transmembrane transporter activity, plasma membrane, photosynthesis, protein processing in the endoplasmic reticulum, cysteine, and methionine metabolism. A total of 150 heat-responsive metabolites detected among three genotypes were highly accumulated, including jasmonic acid, amino acids, sugar, flavonoids, coumarin, and organic acids. Integrating transcriptomic and metabolomic assays revealed that plant hormone signal transduction, cysteine, and methionine metabolism, and α-linolenic acid metabolism play crucial roles in heat tolerance in maize. Our research will be facilitated to identify essential heat tolerance genes in maize, thereby contributing to breeding heat resistance maize varieties. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

17 pages, 8553 KiB  
Article
Genome-Wide Analysis of the Banana WRKY Transcription Factor Gene Family Closely Related to Fruit Ripening and Stress
by Caihong Jia, Zhuo Wang, Jingyi Wang, Hongxia Miao, Jianbin Zhang, Biyu Xu, Juhua Liu, Zhiqiang Jin and Jihong Liu
Plants 2022, 11(5), 662; https://doi.org/10.3390/plants11050662 - 28 Feb 2022
Cited by 19 | Viewed by 2786
Abstract
WRKY transcription factors (TFs) play an important role in plant responses to biotic and abiotic stress as well as in plant growth and development. In the present study, bioinformatics methods were used to identify members of the WRKY transcription factor family in the [...] Read more.
WRKY transcription factors (TFs) play an important role in plant responses to biotic and abiotic stress as well as in plant growth and development. In the present study, bioinformatics methods were used to identify members of the WRKY transcription factor family in the Musa acuminata (DH-Pahang) genome (version 2). A total of 164 MaWRKYs were identified and phylogenetic analysis showed that MaWRKYs could be categorized into three subfamilies. Overall, the 162 MaWRKYs were distributed on 11 chromosomes, and 2 genes were not located on the chromosome. There were 31 collinear genes from segmental duplication and 7 pairs of genes from tandem duplication. RNA-sequencing was used to analyze the expression profiles of MaWRKYs in different fruit development, ripening stages, under various abiotic and biotic stressors. Most of the MaWRKYs showed a variety of expression patterns in the banana fruit development and ripening stages. Some MaWRKYs responded to abiotic stress, such as low temperature, drought, and salt stress. Most differentially expressed MaWRKYs were downregulated during banana’s response to Foc TR4 infection, which plays an important role in physiological regulation to stress. Our findings indicate that MaWRKY21 directly binds to the W-box of the MaICS promoter to decrease MaICS transcription and then reduce the enzyme activity. These studies have improved our understanding of the molecular basis for the development and stress resistance of an important banana variety. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 1044 KiB  
Article
Assessment of the Fertilization Capacity of the Aquaculture Sediment for Wheat Grass as Sustainable Alternative Use
by Marian Burducea, Andrei Lobiuc, Lenuta Dirvariu, Eugen Oprea, Stefan Mihaita Olaru, Gabriel-Ciprian Teliban, Vasile Stoleru, Vlad Andrei Poghirc, Irina Gabriela Cara, Manuela Filip, Mariana Rusu, Valtcho D. Zheljazkov and Cristian-Alin Barbacariu
Plants 2022, 11(5), 634; https://doi.org/10.3390/plants11050634 - 25 Feb 2022
Cited by 11 | Viewed by 3312
Abstract
Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a [...] Read more.
Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a dried sediment, extracted from an aquaculture pond used for common carp cultivation, on the growth and physiology of potted wheat grass and the quality of the juice obtained from wheat grass. The results showed that sediment application did not produce significant morphological changes, although the values for plant height (16.94–19.22 cm), leaf area (19.67–139.21 mm2), and biomass (3.39–4.26 g/plant) were higher in sediment-grown plants. However, at a physiological level, the effect was negative, decreasing photosynthesis (0.82–1.66 μmol CO2 m2s−1), fluorescence ΦPSII (0.737–0.782), and chlorophyll content (1.40–1.83 CCI). The juice yield was reduced in the sediment treatments (46–58 g/100 g), while the quality was improved by increasing the content of phenols (2.55–3.39 µg/mL gallic acid equivalent), flavonoids (1.41–1.85 µg/mL quercetin equivalent), and antioxidant activity (47.99–62.7% inhibition of; 2,2-diphenyl-1-picrylhydrazyl). The positive results obtained in this study can be attributed to the moderate nutrient content of the sediment and a negligible concentration of heavy metals. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Graphical abstract

14 pages, 12102 KiB  
Article
Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention
by Vaida Steponavičienė, Vaclovas Bogužas, Aušra Sinkevičienė, Lina Skinulienė, Rimantas Vaisvalavičius and Alfredas Sinkevičius
Plants 2022, 11(5), 614; https://doi.org/10.3390/plants11050614 - 24 Feb 2022
Cited by 20 | Viewed by 2718
Abstract
The long-term implementation of crop rotation and tillage has an impact on the soil environment through inputs and soil disturbance, which in turn has an impact on soil quality. Tillage has a long-term impact on the agroecosystems. Since 1999, a long-term field experiment [...] Read more.
The long-term implementation of crop rotation and tillage has an impact on the soil environment through inputs and soil disturbance, which in turn has an impact on soil quality. Tillage has a long-term impact on the agroecosystems. Since 1999, a long-term field experiment has been carried out at the Experimental Station of Vytautas Magnus University. The aim of this experiment is to investigate the effects of long-term various-intensity tillage and straw retention systems on soil physical properties. The results were obtained in 2013 and 2019 (spring rape was growing). According to the latest edition of the International Soil Classification System, the soil in the experimental field was classified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, and Amphisiltic). The treatments were arranged using a split-plot design. In a two-factor field experiment, the straw was removed from one part of the experimental field, and the entire straw yield was chopped and spread at harvest in the other part of the field (Factor A). There were three different tillage systems as a subplot (conventional deep ploughing, cover cropping with following shallow termination, and no-tillage) (Factor B). There were four replications. The long-term application of reduced tillage significantly increased soil water retention and improved the pore structure and CO2 emissions. Irrespective of the incorporation of straw, it was found that as the amount of water available to plants increases, CO2 emissions from the soil increase to some extent and then start to decrease. Simplified tillage and no-tillage in uncultivated soil reduce CO2 emissions by increasing the amount of water available to plants from 0.151 to 0.233 m3·m−3. Full article
(This article belongs to the Special Issue Conservation Tillage for Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 2213 KiB  
Article
The Endemic Vascular Flora of Sardinia: A Dynamic Checklist with an Overview of Biogeography and Conservation Status
by Mauro Fois, Emmanuele Farris, Giacomo Calvia, Giuliano Campus, Giuseppe Fenu, Marco Porceddu and Gianluigi Bacchetta
Plants 2022, 11(5), 601; https://doi.org/10.3390/plants11050601 - 23 Feb 2022
Cited by 44 | Viewed by 5084
Abstract
The vascular flora of Sardinia has been investigated for more than 250 years, with particular attention to the endemic component due to their phylogeographic and conservation interest. However, continuous changes in the floristic composition through natural processes, anthropogenic drivers or modified taxonomical attributions [...] Read more.
The vascular flora of Sardinia has been investigated for more than 250 years, with particular attention to the endemic component due to their phylogeographic and conservation interest. However, continuous changes in the floristic composition through natural processes, anthropogenic drivers or modified taxonomical attributions require constant updating. We checked all available literature, web sources, field, and unpublished data from the authors and acknowledged external experts to compile an updated checklist of vascular plants endemic to Sardinia. Life and chorological forms as well as the conservation status of the updated taxa list were reported. Sardinia hosts 341 taxa (15% of the total native flora) endemic to the Tyrrhenian Islands and other limited continental territories; 195 of these (8% of the total native flora) are exclusive to Sardinia. Asteraceae (50 taxa) and Plumbaginaceae (42 taxa) are the most representative families, while the most frequent life forms are hemicryptophytes (118 taxa) and chamaephytes (106 taxa). The global conservation status, available for 201 taxa, indicates that most endemics are under the ‘Critically Endangered’ (25 taxa), ‘Endangered’ (31 taxa), or ‘Least Concern’ (90 taxa) IUCN categories. This research provides an updated basis for future biosystematics, taxonomic, biogeographical, and ecological studies and in supporting more integrated and efficient policy tools. Full article
Show Figures

Figure 1

18 pages, 1359 KiB  
Article
Thermotherapy Followed by Shoot Tip Cryotherapy Eradicates Latent Viruses and Apple Hammerhead Viroid from In Vitro Apple Rootstocks
by Jean Carlos Bettoni, Gennaro Fazio, Larissa Carvalho Costa, Oscar P. Hurtado-Gonzales, Maher Al Rwahnih, Abby Nedrow and Gayle M. Volk
Plants 2022, 11(5), 582; https://doi.org/10.3390/plants11050582 - 22 Feb 2022
Cited by 18 | Viewed by 4286
Abstract
Virus and viroid-free apple rootstocks are necessary for large-scale nursery propagation of apple (Malus domestica) trees. Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are among the most serious apple viruses that are prevalent in most apple [...] Read more.
Virus and viroid-free apple rootstocks are necessary for large-scale nursery propagation of apple (Malus domestica) trees. Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are among the most serious apple viruses that are prevalent in most apple growing regions. In addition to these viruses, a new infectious agent named Apple hammerhead viroid (AHVd) has been identified. We investigated whether thermotherapy or cryotherapy alone or a combination of both could effectively eradicate ACLSV, ASGV, and AHVd from in vitro cultures of four apple rootstocks developed in the Cornell-Geneva apple rootstock breeding program (CG 2034, CG 4213, CG 5257, and CG 6006). For thermotherapy treatments, in vitro plants were treated for four weeks at 36 °C (day) and 32 °C (night). Plant vitrification solution 2 (PVS2) and cryotherapy treatments included a shoot tip preculture in 2 M glycerol + 0.8 M sucrose for one day followed by exposure to PVS2 for 60 or 75 min at 22 °C, either without or with liquid nitrogen (LN, cryotherapy) exposure. Combinations of thermotherapy and PVS2/cryotherapy treatments were also performed. Following treatments, shoot tips were warmed, recovered on growth medium, transferred to the greenhouse, grown, placed in dormancy inducing conditions, and then grown again prior to sampling leaves for the presence of viruses and viroids. Overall, thermotherapy combined with cryotherapy treatment resulted in the highest percentage of virus- and viroid-free plants, suggesting great potential for producing virus- and viroid-free planting materials for the apple industry. Furthermore, it could also be a valuable tool to support the global exchange of apple germplasm. Full article
(This article belongs to the Special Issue Plant Cryobiotechnology: Progress and Prospects)
Show Figures

Figure 1

14 pages, 3980 KiB  
Article
Molecular and Physiological Effects of Magnesium–Polyphenolic Compound as Biostimulant in Drought Stress Mitigation in Tomato
by Haytham Hamedeh, Shaula Antoni, Lorenzo Cocciaglia and Valentina Ciccolini
Plants 2022, 11(5), 586; https://doi.org/10.3390/plants11050586 - 22 Feb 2022
Cited by 15 | Viewed by 3526
Abstract
Plant biostimulants are being recognized as innovative tools to improve sustainable agricultural practices to mitigate the drastic effects of climate change, which is leading to a severe reduction in agricultural yields. In this work, a new biostimulant (EnNuVi® ALPAN®) was [...] Read more.
Plant biostimulants are being recognized as innovative tools to improve sustainable agricultural practices to mitigate the drastic effects of climate change, which is leading to a severe reduction in agricultural yields. In this work, a new biostimulant (EnNuVi® ALPAN®) was evaluated for its effectiveness on tomato (Solanum lycopersicum Mill. cv. Rio Grande) plants subjected to water deficit conditions. The molecular effects were elucidated through transcriptomic RNA-seq and gene expression qPCR analysis and the physiological responses were evaluated through qualitative analysis of pigments and proline content, membrane stability, and lipid peroxidation. ALPAN® was shown to adjust the transcriptional response by upregulating genes involved in source to sink carbohydrate metabolism and translocation, stomatal closure, and cell homeostasis. ALPAN® was shown to mitigate the deteriorating effects of water deficit on the physiological status of the plants by stabilizing the levels of the photosynthetic pigments, regulating the accumulation of osmo-protectants, and preserving the cell wall lipid bilayer from oxidation. In conclusion, transcriptomic and physiological analysis provided insightful information on the biostimulant effects, indicating a positive role of ALPAN® foliar application in alleviating the negative costs of water deficit. Full article
Show Figures

Figure 1

35 pages, 2611 KiB  
Review
Sprouts and Microgreens—Novel Food Sources for Healthy Diets
by Andreas W. Ebert
Plants 2022, 11(4), 571; https://doi.org/10.3390/plants11040571 - 21 Feb 2022
Cited by 88 | Viewed by 14831
Abstract
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale [...] Read more.
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale vegetable production, highlights Brassica vegetables because of their health-promoting secondary metabolites (polyphenols, glucosinolates), and looks at consumer acceptance of sprouts and microgreens. Apart from the main crops used for microscale vegetable production, landraces, wild food plants, and crops’ wild relatives often have high phytonutrient density and exciting flavors and tastes, thus providing the scope to widen the range of crops and species used for this purpose. Moreover, the nutritional value and content of phytochemicals often vary with plant growth and development within the same crop. Sprouted seeds and microgreens are often more nutrient-dense than ungerminated seeds or mature vegetables. This review also describes the environmental and priming factors that may impact the nutritional value and content of phytochemicals of microscale vegetables. These factors include the growth environment, growing substrates, imposed environmental stresses, seed priming and biostimulants, biofortification, and the effect of light in controlled environments. This review also touches on microgreen market trends. Due to their short growth cycle, nutrient-dense sprouts and microgreens can be produced with minimal input; without pesticides, they can even be home-grown and harvested as needed, hence having low environmental impacts and a broad acceptance among health-conscious consumers. Full article
Show Figures

Figure 1

17 pages, 4508 KiB  
Article
Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil
by Petra Borotová, Lucia Galovičová, Nenad L. Vukovic, Milena Vukic, Eva Tvrdá and Miroslava Kačániová
Plants 2022, 11(4), 558; https://doi.org/10.3390/plants11040558 - 20 Feb 2022
Cited by 33 | Viewed by 5876
Abstract
The essential oil of Melaleuca alternifolia, commonly known as tea tree oil, has many beneficial properties due to its bioactive compounds. The aim of this research was to characterize the tea tree essential oil (TTEO) from Slovakia and its biological properties, which [...] Read more.
The essential oil of Melaleuca alternifolia, commonly known as tea tree oil, has many beneficial properties due to its bioactive compounds. The aim of this research was to characterize the tea tree essential oil (TTEO) from Slovakia and its biological properties, which are specific to the chemical composition of essential oil. Gas chromatography/mass spectroscopy revealed that terpinen-4-ol was dominant with a content of 40.3%. γ-Terpinene, 1,8-cineole, and p-cymene were identified in contents of 11.7%, 7.0%, and 6.2%, respectively. Antioxidant activity was determined at 41.6% radical inhibition, which was equivalent to 447 μg Trolox to 1 mL sample. Antimicrobial activity was observed by the disk diffusion method against Gram-positive (G+), Gram-negative (G) bacteria and against yeasts, where the best antimicrobial activity was against Enterococcus faecalis and Candida albicans with an inhibition zone of 10.67 mm. The minimum inhibitory concentration showed better susceptibility by G+ and G planktonic cells, while yeast species and biofilm-forming bacteria strains were more resistant. Antibiofilm activity was observed against Pseudomonas fluorescens and Salmonella enterica by MALDI-TOF, where degradation of the protein spectra after the addition of essential oil was obtained. Good biological properties of tea tree essential oil allow its use in the food industry or in medicine as an antioxidant and antimicrobial agent. Full article
Show Figures

Figure 1

32 pages, 3143 KiB  
Review
Suberin Biosynthesis, Assembly, and Regulation
by Kathlyn N. Woolfson, Mina Esfandiari and Mark A. Bernards
Plants 2022, 11(4), 555; https://doi.org/10.3390/plants11040555 - 19 Feb 2022
Cited by 51 | Viewed by 9992
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer [...] Read more.
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term “suberin” has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels. Full article
(This article belongs to the Special Issue Periderm (Cork) Tissue Development in Plants)
Show Figures

Figure 1

14 pages, 728 KiB  
Article
Dwarf Pomegranate (Punica granatum L. var. nana): Source of 5-HMF and Bioactive Compounds with Applications in the Protection of Woody Crops
by Eva Sánchez-Hernández, Laura Buzón-Durán, José A. Cuchí-Oterino, Jesús Martín-Gil, Belén Lorenzo-Vidal and Pablo Martín-Ramos
Plants 2022, 11(4), 550; https://doi.org/10.3390/plants11040550 - 18 Feb 2022
Cited by 10 | Viewed by 2763
Abstract
While the properties of edible pomegranate varieties have been widely explored, there is little information on ornamental types. In this study, possible alternatives for the valorization of dwarf pomegranate fruits have been explored. The characterization of their hydromethanolic extract by gas chromatography−mass spectrometry [...] Read more.
While the properties of edible pomegranate varieties have been widely explored, there is little information on ornamental types. In this study, possible alternatives for the valorization of dwarf pomegranate fruits have been explored. The characterization of their hydromethanolic extract by gas chromatography−mass spectrometry evidenced the presence of high contents of 5-hydroxymethylfurfural (a carbon-neutral feedstock for the production of fuels and other chemicals) and β- and γ-sitosterol stereoisomers. The microbicidal activity of the crude extract, both alone and in a conjugate complex with chitosan oligomers (COS), was investigated against three plant pathogenic microorganisms that cause significant losses in woody crops: Erwinia amylovora, E. vitivora, and Diplodia seriata. In in vitro assays, a strong synergistic behavior was found after conjugation of the bioactive constituents of the fruit extract with COS, resulting in minimum inhibitory concentration (MIC) values of 750 and 375 μg·mL−1 against E. amylovora and E. vitivora, respectively, and an EC90 value of 993 μg·mL−1 against D. seriata. Hence, extracts from the non-edible fruits of this Punicaceae may hold promise as a source of high value-added phytochemicals or as environmentally friendly agrochemicals. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Graphical abstract

15 pages, 3350 KiB  
Article
Combined Effect of Microplastics and Cd Alters the Enzymatic Activity of Soil and the Productivity of Strawberry Plants
by Andrés Pinto-Poblete, Jorge Retamal-Salgado, María Dolores López, Nelson Zapata, Angela Sierra-Almeida and Mauricio Schoebitz
Plants 2022, 11(4), 536; https://doi.org/10.3390/plants11040536 - 17 Feb 2022
Cited by 61 | Viewed by 6674
Abstract
The synergistic effect between heavy metals and microplastics can affect soil properties as well as plant performance and yield. The objective of this study was to evaluate the combined effect of microplastics and cadmium on a soil–plant system. Specifically, we proposed to explore [...] Read more.
The synergistic effect between heavy metals and microplastics can affect soil properties as well as plant performance and yield. The objective of this study was to evaluate the combined effect of microplastics and cadmium on a soil–plant system. Specifically, we proposed to explore changes in soil microbiological activity, the growth and yield parameters of strawberry plants, and to evaluate the accumulation of these pollutants in the soil and root system. Plants were planted in clay pots under greenhouse conditions. The experiment was set up as a completely randomized design, with four treatments (Control; MPs; Cd; and Cd + MPs) and five replicates. The results showed that MPs and/or Cd affected plant growth, plant biomass, the number of fruits, root characteristics, dehydrogenase activity, acid phosphatase, and microbial biomass, and increased the accumulation of Cd in the roots and soil. The increased bioavailability of Cd, due to the presence of microplastics, could explain the observed negative effects on soil properties and the performance of strawberry plants. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

21 pages, 5060 KiB  
Article
Metabolic Circuits in Sap Extracts Reflect the Effects of a Microbial Biostimulant on Maize Metabolism under Drought Conditions
by Kgalaletso Othibeng, Lerato Nephali, Akhona Myoli, Nombuso Buthelezi, Willem Jonker, Johan Huyser and Fidele Tugizimana
Plants 2022, 11(4), 510; https://doi.org/10.3390/plants11040510 - 14 Feb 2022
Cited by 8 | Viewed by 2923
Abstract
The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology [...] Read more.
The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology remains enigmatic. Thus, this study is a metabolomics work to unravel metabolic circuits in sap extracts from maize plants treated with a microbial biostimulant, under normal and drought conditions. The biostimulant, which was a consortium of different Bacilli strains, was applied at the planting stage, followed by drought stress application. The maize sap extracts were collected at 5 weeks after emergence, and the extracted metabolites were analyzed on liquid chromatography-mass spectrometry platforms. The acquired data were mined using chemometrics and bioinformatics tools. The results showed that under both well-watered and drought stress conditions, the application of the biostimulant led to differential changes in the profiles of amino acids, hormones, TCA intermediates, phenolics, steviol glycosides and oxylipins. These metabolic changes spanned several biological pathways and involved a high correlation of the biochemical as well as structural metabolic relationships that coordinate the maize metabolism. The hypothetical model, postulated from this study, describes metabolic events induced by the microbial biostimulant for growth promotion and enhanced defences. Such understanding of biostimulant-induced changes in maize sap pinpoints to the biochemistry and molecular mechanisms that govern the biostimulant–plant interactions, which contribute to ongoing efforts to generate actionable knowledge of the molecular and physiological mechanisms that define modes of action of biostimulants. Full article
Show Figures

Figure 1

20 pages, 1031 KiB  
Review
In Vitro Technology in Plant Conservation: Relevance to Biocultural Diversity
by Verena Kulak, Sheri Longboat, Nicolas D. Brunet, Mukund Shukla and Praveen Saxena
Plants 2022, 11(4), 503; https://doi.org/10.3390/plants11040503 - 12 Feb 2022
Cited by 24 | Viewed by 5764
Abstract
Plant diversity is critical to the functioning of human societies, and evidence shows that plant conservation success is driven by integrative approaches that include social and biological factors. Plants have a unique capacity to reproduce asexually, and propagation practices can yield large numbers [...] Read more.
Plant diversity is critical to the functioning of human societies, and evidence shows that plant conservation success is driven by integrative approaches that include social and biological factors. Plants have a unique capacity to reproduce asexually, and propagation practices can yield large numbers of plantlets. These plantlets can be used in several ways to fulfil conservation goals including the repopulation of regions with declining densities of threatened species that hold cultural meaning. However, the potential of in vitro technologies in the conservation of plants that hold cultural meaning is understudied. In this paper we focus upon the roles of in vitro technologies in the conservation of plants relevant to biocultural environments and provide an overview of potential knowledge gaps at the interface of in vitro and plants used traditionally, including those meaningful to Indigenous Peoples. We conclude that in vitro technologies can be powerful tools in biocultural conservation if they are deployed in a manner respectful of the socio-cultural context in which plants play a role, but that further research is needed in this regard. We suggest several epistemological points to facilitate future research. Full article
(This article belongs to the Special Issue In Vitro Conservation of Endangered and Value-Added Plant Species)
Show Figures

Figure 1

22 pages, 2250 KiB  
Article
Impact of Single and Combined Salinity and High-Temperature Stresses on Agro-Physiological, Biochemical, and Transcriptional Responses in Rice and Stress-Release
by Lutfun Nahar, Murat Aycan, Shigeru Hanamata, Marouane Baslam and Toshiaki Mitsui
Plants 2022, 11(4), 501; https://doi.org/10.3390/plants11040501 - 12 Feb 2022
Cited by 30 | Viewed by 3364
Abstract
Here, for the first time, we aimed to identify in rice the key mechanisms and processes underlying tolerance to high-temperature (HT) or salt stress (SS) alone, the co-occurrence of both stresses, and recovery using physiological and biochemical measurements and gene expression analysis. We [...] Read more.
Here, for the first time, we aimed to identify in rice the key mechanisms and processes underlying tolerance to high-temperature (HT) or salt stress (SS) alone, the co-occurrence of both stresses, and recovery using physiological and biochemical measurements and gene expression analysis. We also investigated whether recovery from the two stressors depended on the relative intensities/relief of each stressor. Wild type (‘Yukinkomai’) rice plants were found to be more susceptible to salinity or heat applied individually. SS leads to a depletion of cellular water content, higher accumulation of Na+, and alterations in photosynthetic pigments. The stress-tolerant cultivar ‘YNU31-2-4’ (YNU) displayed a lower Na+/K+ ratio, higher water content in cells and improved photosynthetic traits, antioxidant system, and expression of defence genes. Strikingly, the SS + HT combination provided a significant level of protection to rice plants from the effects of SS alone. The expression pattern of a selected set of genes showed a specific response and dedicated pathways in plants subjected to each of the different stresses, while other genes were explicitly activated when the stresses were combined. Aquaporin genes were activated by SS, while stress-related (P5CS, MSD1, HSPs, and ions transporters) genes were shaped by HT. Hierarchical clustering and principal component analyses showed that several traits exhibited a gradually aggravating effect as plants were exposed to the combined stresses and identified heat as a mitigating factor, clearly separating heat + salt-stressed from salt-non-heat-stressed plants. Furthermore, seedling recovery was far more dependent on the relative intensities of stressors and cultivars, demonstrating the influence of one stressor over another upon stress-release. Taken together, our data show the uniqueness and complexity of the physiological and molecular network modules used by rice plants to respond to single and combined stresses and recovery. Full article
(This article belongs to the Special Issue Advances in Biosaline Agriculture)
Show Figures

Figure 1

14 pages, 475 KiB  
Review
Genetic Control of Efficient Nitrogen Use for High Yield and Grain Protein Concentration in Wheat: A Review
by Wan Teng, Xue He and Yiping Tong
Plants 2022, 11(4), 492; https://doi.org/10.3390/plants11040492 - 11 Feb 2022
Cited by 14 | Viewed by 3168
Abstract
The increasing global population and the negative effects of nitrogen (N) fertilizers on the environment challenge wheat breeding to maximize yield potential and grain protein concentration (GPC) in an economically and environmentally friendly manner. Understanding the molecular mechanisms for the response of yield [...] Read more.
The increasing global population and the negative effects of nitrogen (N) fertilizers on the environment challenge wheat breeding to maximize yield potential and grain protein concentration (GPC) in an economically and environmentally friendly manner. Understanding the molecular mechanisms for the response of yield components to N availability and assimilates allocation to grains provides the opportunity to increase wheat yield and GPC simultaneously. This review summarized quantitative trait loci/genes which can increase spikes and grain number by enhancing N uptake and assimilation at relative early growth stage, and 1000-grain weight and GPC by increasing post-anthesis N uptake and N allocation to grains. Full article
Show Figures

Figure 1

15 pages, 1575 KiB  
Article
Aqueous Extracts of Three Herbs Allelopathically Inhibit Lettuce Germination but Promote Seedling Growth at Low Concentrations
by Kaili Wang, Ting Wang, Cheng Ren, Pengpeng Dou, Zhengzhou Miao, Xiqiang Liu, Ding Huang and Kun Wang
Plants 2022, 11(4), 486; https://doi.org/10.3390/plants11040486 - 11 Feb 2022
Cited by 21 | Viewed by 3578
Abstract
Allelopathy is an important process in plant communities. The effects of allelopathy on seed germination and seedling development have been extensively investigated. However, the influences of extract soaking time and concentration on the foregoing parameters are poorly understood. Here, we conducted a seed [...] Read more.
Allelopathy is an important process in plant communities. The effects of allelopathy on seed germination and seedling development have been extensively investigated. However, the influences of extract soaking time and concentration on the foregoing parameters are poorly understood. Here, we conducted a seed germination assay to determine the allelopathic effects of the donor herbs Achnatherum splendens (Trin.) Nevski, Artemisia frigida Willd., and Stellera chamaejasme L., from a degraded grassland ecosystem in northern China, on lettuce (Lactuca sativa L.) seed germination and early seedling growth. Extract soaking times (12 h or 24 h) did not exhibit significantly different effects on lettuce seed germination or seedling development. However, all aqueous herb extracts inhibited lettuce seed germination and root length (RI < 0) and promoted lettuce shoot length, stem length, leaf length, and leaf width (RI > 0) at both low (0.005 g mL−1) and high (0.05 g mL−1) concentrations. Moreover, A. splendens extracts increased seedling biomass (RI > 0) and synthetical allelopathic effect (SE > 0) at both concentrations. In contrast, both A. frigida and S. chamaejasme extracts had hormesis effects, which stimulate at low concentrations (RI > 0) but inhibit at high concentrations (RI < 0) on seedling biomass and synthetical allelopathic effect (SE). The results suggest that allelopathic potential may be an important mechanism driving the dominance of A. frigida and S. chamaejasme in degraded grasslands. Reseeding allelopathy-promoting species such as A. splendens may be beneficial to grassland restoration. The present study also demonstrated that seedling biomass, root and shoot length, and seed germination rate are the optimal bioindicators in allelopathy assays and could be more representative when they are combined with the results of multivariate analyses. Full article
(This article belongs to the Special Issue Plant–Plant Allelopathic Interactions)
Show Figures

Figure 1

20 pages, 3073 KiB  
Article
Characteristics of the Seed Germination and Seedlings of Six Grape Varieties (V. vinifera)
by Zhi-Lei Wang, Miao Hui, Xue-Qing Shi, Dong Wu, Ying Wang, Xing Han, Xiao Cao, Fei Yao, Hua Li and Hua Wang
Plants 2022, 11(4), 479; https://doi.org/10.3390/plants11040479 - 10 Feb 2022
Cited by 10 | Viewed by 2545
Abstract
Intraspecific recurrent selection in V. vinifera is an effective method for breeding of high quality, disease-, cold-, and drought-resistance grapes. Exploring the optimal treatment methods for grape (V. vinifera) seeds can help to accelerate the process of intraspecific recurrent selection and [...] Read more.
Intraspecific recurrent selection in V. vinifera is an effective method for breeding of high quality, disease-, cold-, and drought-resistance grapes. Exploring the optimal treatment methods for grape (V. vinifera) seeds can help to accelerate the process of intraspecific recurrent selection and improve breeding efficiency. In this study, seeds of six V. vinifera varieties were used as experimental materials, and the germination and seedling formation characteristics were studied by single factor treatment and orthogonal compound treatment, respectively. To do this, stratification, chemical substances, beak cutting, and pre-germination treatments were tested, and the optimal treatment combination was determined for each variety. The results indicated that the optimal conditions obtained in the orthogonal experiments were not completely consistent with those in the single-factor experiments. Single factor experiment results demonstrated that two stratification methods (chilling gauze-storage and chilling sand-storage) and two pre-germination methods (pre-germination in petri dishes and pre-germination in a bean sprouter) vary in effectiveness for different varieties. gibberellin acid (GA3) soaking and beak-cutting promote the germination and seedling rate of the tested varieties. Orthogonal test results demonstrate that, for Dunkelfelder and Cabernet Sauvignon, the optimal treatment combination was chilling sand-storage + GA3 soaking seed + beak cutting + pre-germination in petri dishes. For Meili, the optimal treatment combination was chilling sand-storage + acetic acid (HAc) soaking seed + beak cutting + pre-germination in petri dishes. For Ecolly, the optimal treatment combination was chilling sand-storage + GA3 soaking seed + beak cutting + pre-germination in a bean sprouter. For Garanior, the optimal treatment combination was chilling sand-storage + HAc soaking seed + no beak cutting + pre-germination in petri dishes. For Marselan, the optimal treatment combination was chilling gauze-storage + GA3 soaking seed + beak cutting + pre-germination in a bean sprouter. This study identified the optimal conditions for seed germination and seedling formation of six grape varieties, which will facilitate future work to characterize the seed germination and seedling formation of seeds obtained by intraspecific hybridization of these varieties. This work also provides a reference for addressing problems of low seed germination rate and suboptimal seedling formation for better utilization of grape germplasms. Full article
(This article belongs to the Special Issue The Transition from Seed to Seedling)
Show Figures

Figure 1

14 pages, 643 KiB  
Review
Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development
by Gaodian Shen, Wenli Sun, Zican Chen, Lei Shi, Jun Hong and Jianxin Shi
Plants 2022, 11(4), 468; https://doi.org/10.3390/plants11040468 - 9 Feb 2022
Cited by 51 | Viewed by 5745
Abstract
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in [...] Read more.
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in research on plant GELPs in several model plants and crops, including Arabidopsis, rice, maize and tomato, while focusing on the roles of GELPs in regulating plant development and plant–environment interactions. In addition, the possible regulatory network and mechanisms of GELPs have been discussed. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

Back to TopTop