Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2548 KiB  
Article
The Readiness of the Water Utilities in Bulgaria for Transition toward a Circular Economy
by Galina Dimova, Sonya Dimitrova, Irina Kostova, Svetlana Lazarova, Irina Ribarova, Dean Stoyanov, Radoslav Tonev, Emil Tsanov and Dobril Valchev
Processes 2022, 10(6), 1156; https://doi.org/10.3390/pr10061156 - 9 Jun 2022
Cited by 3 | Viewed by 2822
Abstract
Urban water systems are still in their infancy regarding the transition toward a circular economy, despite the sporadic successful examples worldwide. This paper was aimed at analyzing the preparedness of four water utilities in Bulgaria for the implementation of circular economy principles and [...] Read more.
Urban water systems are still in their infancy regarding the transition toward a circular economy, despite the sporadic successful examples worldwide. This paper was aimed at analyzing the preparedness of four water utilities in Bulgaria for the implementation of circular economy principles and solutions. These utilities provide water supply and sewerage services to about 30% of the population in Bulgaria. SWOT analysis was used as a core tool. Publicly available data such as nonrevenue water, pressure management, energy demand, network digitalization, and sludge utilization were used to explore the internal factors. The external environment was considered through the legislative and socioeconomic framework, climate change, etc. Finally, the credibility of the conclusions was verified in workshops with the water utilities. The key positive outcomes were that the external factors favor the shift to circular systems, while the major weakness, i.e., the aged infrastructure, is actually a good opportunity for the implementation of modern and circular solutions. The efficient collaboration of water utilities with other actors is a precondition for the development of a sustainable market for “circular” products. Full article
Show Figures

Figure 1

22 pages, 9865 KiB  
Article
A Novel MPPT Heating Control Strategy Applied to the Induction Heating System
by Yu-Lin Lee, Chang-Hua Lin and Hwa-Dong Liu
Processes 2022, 10(6), 1151; https://doi.org/10.3390/pr10061151 - 8 Jun 2022
Cited by 2 | Viewed by 2676
Abstract
This study proposes an induction heating system with maximum power-point tracking (MPPT) control strategy. The system architecture adopts a 1.3 kW full-bridge series resonant circuit with a step-down transformer and adjusts the operating frequency by a microcontroller unit to improve the heating efficiency. [...] Read more.
This study proposes an induction heating system with maximum power-point tracking (MPPT) control strategy. The system architecture adopts a 1.3 kW full-bridge series resonant circuit with a step-down transformer and adjusts the operating frequency by a microcontroller unit to improve the heating efficiency. Secondly, the proposed MPPT control strategy based on induction heating uses the relationship between the operating frequency and the system heating temperature to find the operating frequency corresponding to the maximum power point (MPP) quickly. Then, an additional hill-climbing algorithm adjusting the duty cycle is applied to reach the duty cycle corresponding to the MPP. Under the simulation and actual experimental measurement, the traditional control strategy has 76% and 68% at 500 and 750 degrees, respectively, and it takes 320 s for the system to reach 750 degrees. By contrast, the proposed MPPT control strategy achieves 96% efficiency when the system heating temperature is 500 and 750 degrees, and it only takes 120 s to reach the system heating temperature to 750 degrees. The contribution of this study is that the traditional full-bridge series resonant converter is implemented for the proposed induction heating system, where the proposed MPPT control strategy applied to the proposed induction heating system significantly has high efficiency, high stability, and high heating speed advantages, which can be accurately controlled. Full article
Show Figures

Figure 1

22 pages, 12627 KiB  
Article
Implementation of the Non-Associated Elastoplastic MSDPu Model in FLAC3D and Application for Stress Analysis of Backfilled Stopes
by Feitao Zeng, Li Li, Michel Aubertin and Richard Simon
Processes 2022, 10(6), 1130; https://doi.org/10.3390/pr10061130 - 5 Jun 2022
Cited by 2 | Viewed by 2031
Abstract
The multiaxial Mises-Schleicher and Drucker-Prager unified (MSDPu) criterion has been shown to exhibit several specific features compared to other yield and failure criteria, including a nonlinear mean stress dependency, influence of the Lode angle, use of independent uniaxial compressive and tensile [...] Read more.
The multiaxial Mises-Schleicher and Drucker-Prager unified (MSDPu) criterion has been shown to exhibit several specific features compared to other yield and failure criteria, including a nonlinear mean stress dependency, influence of the Lode angle, use of independent uniaxial compressive and tensile strength values and absence of an apex (singularity) on the envelope surface in the negative stress quadrant. However, MSDPu has been seldom used in practice to solve geotechnical and geomechanical engineering problems mainly because it had not yet been fully implemented into three-dimensional (3D) numerical codes. To fill this gap, a 3D elastoplastic MSDPu formulation is developed and implemented into FLAC3D. The proposed MSDPu elastic-perfectly plastic (EPP) constitutive model is then validated against existing analytical solutions developed for calculating the stress and displacement distributions around cylindrical openings. The FLAC3D MSDPu-EPP model is then applied to evaluate the vertical and horizontal stress distributions in a three-dimensional vertical backfilled stope. The numerical results obtained with the MSDPu-EPP model are compared with those obtained with the Mohr-Coulomb EPP model, to highlight key features of the new formulation. Full article
(This article belongs to the Special Issue Numerical Modeling in Civil and Mining Geotechnical Engineering)
Show Figures

Figure 1

14 pages, 1708 KiB  
Article
Effects of Phosphate, Red Mud, and Biochar on As, Cd, and Cu Immobilization and Enzymatic Activity in a Co-Contaminated Soil
by Di Zhang, Kaihong Yan, Yanju Liu and Ravi Naidu
Processes 2022, 10(6), 1127; https://doi.org/10.3390/pr10061127 - 5 Jun 2022
Cited by 9 | Viewed by 2251
Abstract
Arsenic (As), cadmium (Cd), and copper (Cu) are the primary inorganic pollutants commonly found in contaminated soils. The simultaneous stabilization of the three elements is a preferred approach for mixture-contaminated soils which has received extensive research attention. However, few studies have focused on [...] Read more.
Arsenic (As), cadmium (Cd), and copper (Cu) are the primary inorganic pollutants commonly found in contaminated soils. The simultaneous stabilization of the three elements is a preferred approach for mixture-contaminated soils which has received extensive research attention. However, few studies have focused on the immobilization efficiency of a single amendment on the three elements. In this study, phosphate, red mud, and biochar were used to remediate As (237.8 mg kg−1), Cd (28.72 mg kg−1), and Cu (366.5 mg kg−1) co-contaminated soil using a 180-day incubation study. The BCR (European Community Bureau of Reference) extraction method, NH4H2PO4–extractable As, and diethylenetriamine penta-acetic acid (DTPA)–extractable Cd and Cu were analyzed at different time intervals. The results indicated that the application of red mud and biochar significantly reduced soil DTPA–Cd and Cu concentrations during the incubation, while the decrease in soil NH4H2PO4–As was much less than that of soil DTPA–Cd and Cu. After 180 days of incubation, the concentrations of NH4H2PO4–As in red mud and biochar treatments decreased by 2.15~7.89% and 3.01~9.63%, respectively. Unlike red mud and biochar, phosphate significantly reduced the concentration of soil DTPA–Cd and Cu, but failed to lower that of As. The BCR extraction method confirmed that red mud and biochar addition increased the reducible fraction of As due to the surface complexes of As with Fe oxide. Canonical correspondence analysis (CCA) demonstrated that soil pH in addition to available As, Cd, and Cu concentrations were the primary factors in driving the changes in soil enzymatic activity. Soil pH showed positive correlation with soil urease and catalase activities, while negative correlation was observed between soil-available As, Cd, and Cu, and soil enzyme activities. This study revealed that it is difficult to simultaneously and significantly reduce the bioavailabilities of soil As, Cd, and Cu using one amendment. Further research on modifying these amendments or applying combined amendments will be conducted, in order to develop an efficient method for simultaneously immobilizing As, Cd, and Cu. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

12 pages, 1652 KiB  
Review
Current Strategies to Improve Yield of Recombinant Protein Production in Rice Suspension Cells
by Yu-Hsiang Chi and Li-Fen Huang
Processes 2022, 10(6), 1120; https://doi.org/10.3390/pr10061120 - 3 Jun 2022
Cited by 6 | Viewed by 5613
Abstract
A plant cell-based recombinant glucocerebrosidase was approved by the FDA in 2012 for the treatment of human inherited Gaucher disease, indicating that plant suspension cells have advantages in biosafety and a low production cost as a commercial pharmaceutical recombinant protein expression system. A [...] Read more.
A plant cell-based recombinant glucocerebrosidase was approved by the FDA in 2012 for the treatment of human inherited Gaucher disease, indicating that plant suspension cells have advantages in biosafety and a low production cost as a commercial pharmaceutical recombinant protein expression system. A low allergenic rice suspension cell-based recombinant protein expression system controlled by the αAmy3/RAmy3D promoter has been shown to result in relatively high protein yields in plant cell-based systems. Although several recombinant proteins have been produced in rice suspension cell-based systems, yields must be improved to compete with the current commercial protein expression systems. Different strategies were performed and showed successful improvements in recombinant protein yields in this rice system. The review updates and highlights strategies for potential improvements of the αAmy3-based rice suspension cell-based system. Full article
(This article belongs to the Special Issue State of the Art of Protein Expression Systems)
Show Figures

Figure 1

24 pages, 3950 KiB  
Review
Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release
by Paolo Trucillo
Processes 2022, 10(6), 1094; https://doi.org/10.3390/pr10061094 - 31 May 2022
Cited by 56 | Viewed by 7659
Abstract
Carriers are protective transporters of drugs to target cells, facilitating therapy under each points of view, such as fast healing, reducing infective phenomena, and curing illnesses while avoiding side effects. Over the last 60 years, several scientists have studied drug carrier properties, trying [...] Read more.
Carriers are protective transporters of drugs to target cells, facilitating therapy under each points of view, such as fast healing, reducing infective phenomena, and curing illnesses while avoiding side effects. Over the last 60 years, several scientists have studied drug carrier properties, trying to adapt them to the release environment. Drug/Carrier interaction phenomena have been deeply studied, and the release kinetics have been modeled according to the occurring phenomena involved in the system. It is not easy to define models’ advantages and disadvantages, since each of them may fit in a specific situation, considering material interactions, diffusion and erosion phenomena, and, no less important, the behavior of receiving medium. This work represents a critical review on main mathematical models concerning their dependency on physical, chemical, empirical, or semi-empirical variables. A quantitative representation of release profiles has been shown for the most representative models. A final critical comment on the applicability of these models has been presented at the end. A mathematical approach to this topic may help students and researchers approach the wide panorama of models that exist in literature and have been optimized over time. This models list could be of practical inspiration for the development of researchers’ own new models or for the application of proper modifications, with the introduction of new variable dependency. Full article
(This article belongs to the Special Issue Drug Carriers Production Processes for Innovative Human Applications)
Show Figures

Figure 1

12 pages, 874 KiB  
Article
Modeling Stakeholders Openness to Sustainable Logistics Measures Using a Data Analysis Approach
by Maria Matusiewicz
Processes 2022, 10(6), 1096; https://doi.org/10.3390/pr10061096 - 31 May 2022
Viewed by 1406
Abstract
The last mile constitutes the most expensive and difficult part of the supply chain. This fact results from the density of buildings and from traffic congestion. The implemented programs that aim at increasing the effectiveness of city logistics do not always bring about [...] Read more.
The last mile constitutes the most expensive and difficult part of the supply chain. This fact results from the density of buildings and from traffic congestion. The implemented programs that aim at increasing the effectiveness of city logistics do not always bring about the expected results, the reason being the lack of consultations with stakeholders prior to their implementation. Such consultations could help to recognize the expectations, aims and fears of each of the agent/actor groups using the urban space. The purpose of this article is to recognize the attitude of one of the groups of stakeholders (recipients/businesses located in the area) in the Polish neighboring agglomerations of Gdańsk and Gdynia, towards chosen city logistic measures. The research consisted in searching for a correlation between the attitude towards a particular city logistics measure and the size of the business, as well as between the attitude towards the given city logistics measure and the difficulty of its implementation. The results showed that there is a relationship between the difficulty of implementing a given city logistics measure and the tendency to implement it and that the number of employees influence the tendency towards openness to the new logistics measures; the bigger the enterprise, the greater the openness to new logistic solutions. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

23 pages, 4813 KiB  
Article
A Feature Engineering-Assisted CM Technology for SMPS Output Aluminium Electrolytic Capacitors (AEC) Considering D-ESR-Q-Z Parameters
by Akeem Bayo Kareem and Jang-Wook Hur
Processes 2022, 10(6), 1091; https://doi.org/10.3390/pr10061091 - 30 May 2022
Cited by 8 | Viewed by 2523
Abstract
Recent research has seen an interest in the condition monitoring (CM) approach for aluminium electrolytic capacitors (AEC), which are present in switched-mode power supplies and other power electronics equipment. From various literature reviews conducted and from a failure mode effect analysis (FMEA) standpoint, [...] Read more.
Recent research has seen an interest in the condition monitoring (CM) approach for aluminium electrolytic capacitors (AEC), which are present in switched-mode power supplies and other power electronics equipment. From various literature reviews conducted and from a failure mode effect analysis (FMEA) standpoint, the most critical and prone to fault component with the highest percentage is mostly capacitors. Due to its long-lasting ability (endurance), CM offers a better paradigm for AEC due to its application. However, owing to severe conditions (over-voltage, mechanical stress, high temperature) that could occur during use, they (capacitors) could be exposed to early breakdown and overall shutdown of the SMPS. This study considered accelerated life testing (electrical stress and long-term frequency testing) for the component due to its endurance in thousands of hours. We have set up the experiment test bench to monitor the critical electrical parameters: dissipation factor (D), equivalent series resistance (ESR), quality factor (Q), and impedance (Z), which would serve as a health indicator (HI) for the evaluation of the AECs. Time-domain features were extracted from the measured data, and the best features were selected using the correlation-based technique. Full article
Show Figures

Figure 1

11 pages, 3045 KiB  
Article
Effect of Wettability on Vacuum-Driven Bubble Nucleation
by Sushobhan Pradhan, Sage Counts, Charissa Enget and Prem Kumar Bikkina
Processes 2022, 10(6), 1073; https://doi.org/10.3390/pr10061073 - 27 May 2022
Cited by 2 | Viewed by 2346
Abstract
Nucleation is the formation of a new phase that has the ability to irreversibly and spontaneously grow into a large-sized nucleus within the body of a metastable parent phase. In this experimental work, the effect of wettability on the incipiation of vacuum-driven bubble [...] Read more.
Nucleation is the formation of a new phase that has the ability to irreversibly and spontaneously grow into a large-sized nucleus within the body of a metastable parent phase. In this experimental work, the effect of wettability on the incipiation of vacuum-driven bubble nucleation, boiling, and the consequent rate of evaporative cooling are studied. One hydrophilic (untreated), and three hydrophobic (chlorinated polydimethylsiloxane, chlorinated fluoroalkylmethylsiloxane and (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane) glass vials of different wettabilities were filled with degassed deionized water and exposed to a controlled vacuum inside a transparent desiccator. The vacuum was increased by 34 mbar abs. (1 inHg rel.) steps with 15-min waiting period to observe bubble nucleation. The average onset pressures for gas/vapor bubble nucleation in CM, CF, and HT vials were 911 ± 30, 911 ± 34, and 925 ± 17 mbar abs., respectively. Bubble nucleation was not observed in hydrophilic vial even at 65 mbar abs. pressure. During the vacuum boiling at 65 mbar abs., the average temperatures of water in hydrophilic, CM, CF, and HT vials reduced from room temperature (~22.5 °C) to 15.2 ± 0.9, 13.1 ± 0.9, 12.9 ± 0.5, and 11.2 ± 0.3 °C, respectively. The results of this study show that the wettability of the container surface has a strong influence on the onset vacuum for vapor/gas bubble nucleation, rate of vacuum boiling, and evaporative cooling. These findings are expected to be useful to develop wettability-based vacuum boiling technologies. Full article
Show Figures

Graphical abstract

16 pages, 2761 KiB  
Article
Bottom-Up Estimates of the Cost of Supplying High-Temperature Industrial Process Heat from Intermittent Renewable Electricity and Thermal Energy Storage in Australia
by Andrea Profaiser, Woei Saw, Graham J. Nathan and Philip Ingenhoven
Processes 2022, 10(6), 1070; https://doi.org/10.3390/pr10061070 - 26 May 2022
Cited by 7 | Viewed by 3270
Abstract
We report the upper and lower bounds for the levelized cost of high-temperature industrial process heat, supplied from electricity generated with solar-photovoltaic (PV) and wind turbines in combination with either thermal or electric battery storage using hourly typical meteorological year (TMY) data, in [...] Read more.
We report the upper and lower bounds for the levelized cost of high-temperature industrial process heat, supplied from electricity generated with solar-photovoltaic (PV) and wind turbines in combination with either thermal or electric battery storage using hourly typical meteorological year (TMY) data, in systems sized to supply between 80% and 100% of continuous thermal demand at a site in the northern part of Western Australia. The system is chosen to supply high-temperature air as the heat transfer media at temperatures of 1000 °C, which is a typical temperature for an alumina or a lime calcination plant. A simplified model of the electrical energy plant has been developed using performance characteristics of real PV and wind systems and TMY data of renewable energy resources. This was used to simulate a large sample of possible system configurations and find the optimal combination of the renewable resources and storage systems, sized to provide renewable shares (RES) of between 80% and 100% of the yearly demand. This allowed the upper and lower bounds to be determined for the cost of heat based on two scenarios in which the excess energy is either dumped (upper bound) or exported to the electricity grid (lower bound) at the average generating cost. The lower bound of the levelized cost of energy (LCOEL), which occurs for the system employing thermal storage, was estimated to range from USD 10/GJ to USD 24/GJ for RES from 80 to 100%. The corresponding upper bound (LCOEU), also estimated for the system using thermal storage, are between USD 16/GJ and USD 31/GJ, for RES between 80% and 100%. The utilization of electric battery storage instead of thermal storage was found to increase the LCOE values by a factor of two to four depending on the share of renewable energy. Compared with current Australian natural gas cost, none of the systems assessed configurations is economical without either a cost for CO2 emissions or a premium for low-carbon products. The estimated cost for CO2 emission that is needed to reach parity with current natural gas prices in Australia is also presented. Full article
Show Figures

Figure 1

16 pages, 3357 KiB  
Article
Modification of Quaternary Clays Using Recycled Fines from Construction and Demolition Waste
by Roumiana Zaharieva, Daniel Evlogiev, Nikolay Kerenchev and Tsveta Stanimirova
Processes 2022, 10(6), 1062; https://doi.org/10.3390/pr10061062 - 26 May 2022
Cited by 3 | Viewed by 2005
Abstract
Foundation of buildings in soft soil such as quaternary clay is often associated with difficult compaction, settlement, non-uniform and/or excessive deformation, and unsatisfactory shear resistance. The present study aims to assess the possibility of using recycled fines from construction and demolition waste, such [...] Read more.
Foundation of buildings in soft soil such as quaternary clay is often associated with difficult compaction, settlement, non-uniform and/or excessive deformation, and unsatisfactory shear resistance. The present study aims to assess the possibility of using recycled fines from construction and demolition waste, such as mechanically treated gypsum and waste concrete powder (WCP), instead of ordinary binders or industrial waste, in the stabilization of quaternary clay. A detailed characterization of soil components is presented. Seven mixes with various proportions of gypsum and WCP are prepared. Main geotechnical parameters of the modified soil are studied by applying standardized methods with a few deviations. XRD analysis and pH measurements are performed. It was found that the effect of 5% to 20% recycled di-hydrate gypsum is limited to improvement in moist soil compatibility. A gypsum content of 10% positively impacts soil cohesion and the oedometer modulus. WCP is an active component, containing non-hydrated cement, portlandite, calcite and calcium silicates hydrate. As a result, by adding 5% of WCP only, significant improvement can be achieved: greater soil cohesion, reduced deformability and higher UCS. When 5% of recycled gypsum is also added, soil cohesion is further improved because of ettringite formation. Full article
Show Figures

Figure 1

18 pages, 2452 KiB  
Article
Repeated Transient Transfection: An Alternative for the Recombinant Production of Difficult-to-Express Proteins Like BMP2
by Simon A. B. Riedl, Valérie Jérôme and Ruth Freitag
Processes 2022, 10(6), 1064; https://doi.org/10.3390/pr10061064 - 26 May 2022
Cited by 3 | Viewed by 3315
Abstract
Human bone morphogenetic protein 2 (hBMP2) is routinely used in medical applications as an inducer of osteoformation. The recombinant production of BMP2 is typically performed using stable Chinese hamster ovary (CHO) cell lines. However, this process is inefficient, resulting in low product titers. [...] Read more.
Human bone morphogenetic protein 2 (hBMP2) is routinely used in medical applications as an inducer of osteoformation. The recombinant production of BMP2 is typically performed using stable Chinese hamster ovary (CHO) cell lines. However, this process is inefficient, resulting in low product titers. In contrast, transient gene expression (TGE), which also enables the production of recombinant proteins, suffers from short production times and hence limited total product amounts. Here, we show that TGE-based BMP2 production is more efficient in HEKsus than in CHOsus cells. Independently of the cell lines, a bicistronic plasmid co-expressing EGFP and BMP2 facilitated the determination of the transfection efficiency but led to inferior BMP2 titers. Finally, we used a high cell density transient transfection (HCD-TGE) protocol to improve and extend the BMP2 expression by performing four rounds of serial transfections on one pool of HEKsus cells. This repeated transient transfection (RTT) process in HEKsus cells was implemented using EGFP as a reporter gene and further adapted for BMP2 production. The proposed method significantly improves BMP2 production (up to 509 ng/106 cells) by extending the production phase (96–360 h). RTT can be integrated into the seed train and is shown to be compatible with scale-up to the liter range. Full article
Show Figures

Graphical abstract

16 pages, 549 KiB  
Review
COVID-19-Current Therapeutical Approaches and Future Perspectives
by Raluca Elisabeta Lupașcu (Moisi), Marina Ionela Ilie, Bruno Ștefan Velescu, Denisa Ioana Udeanu, Camelia Sultana, Simona Ruță and Andreea Letiția Arsene
Processes 2022, 10(6), 1053; https://doi.org/10.3390/pr10061053 - 25 May 2022
Cited by 3 | Viewed by 2364
Abstract
The ongoing pandemic of coronavirus disease (COVID-19) stimulated an unprecedented international collaborative effort for rapid diagnosis, epidemiologic surveillance, clinical management, prevention, and treatment. This review focuses on the current and new therapeutical approaches, summarizing the viral structure and life cycle, with an emphasis [...] Read more.
The ongoing pandemic of coronavirus disease (COVID-19) stimulated an unprecedented international collaborative effort for rapid diagnosis, epidemiologic surveillance, clinical management, prevention, and treatment. This review focuses on the current and new therapeutical approaches, summarizing the viral structure and life cycle, with an emphasis on the specific steps that can be interfered by antivirals: (a) inhibition of viral entry with anti-spike monoclonal antibodies; (b) inhibition of the RNA genome replication with nucleosidic analogs blocking the viral RNA polymerase; (c) inhibition of the main viral protease (Mpro), which directs the formation of the nonstructural proteins. An overview of the immunomodulatory drugs currently used for severe COVID-19 treatment and future therapeutical options are also discussed. Full article
(This article belongs to the Special Issue Pharmaceutical Development and Bioavailability Analysis)
Show Figures

Figure 1

18 pages, 2530 KiB  
Article
Development to Emergency Evacuation Decision Making in Hazardous Materials Incidents Using Machine Learning
by Chuntak Phark, Shineui Kim and Seungho Jung
Processes 2022, 10(6), 1046; https://doi.org/10.3390/pr10061046 - 24 May 2022
Cited by 3 | Viewed by 2075
Abstract
Chemical accidents are the biggest factor that hinders the development of the chemical industry. Issuing an emergency evacuation order is one of effective ways to reduce human casualties that may occur due to chemical accidents. The present study proposes a machine learning-based decision [...] Read more.
Chemical accidents are the biggest factor that hinders the development of the chemical industry. Issuing an emergency evacuation order is one of effective ways to reduce human casualties that may occur due to chemical accidents. The present study proposes a machine learning-based decision making model for faster and more accurate decision making for the issuance of an emergency evacuation order in the event of a chemical accident. To implement the decision making model, supervised learning by the 1-Dimension Convolutional Neural Network based model was carried out using the HSEES and NTSIP data of ATSDR in the United States. An action—victim matrix was devised to determine the validity of emergency evacuation orders and the decision making model was made to learn the matrix so that the decision making model could recommend whether to execute the emergency evacuation orders or not. To make the decision making model learn the chemical accident situations, the embedding technique used in text mining was applied, and weighted learning was carried out considering the fact that learning data are asymmetric. The AUROC value for the results of the decision making by the model is 0.82, which is at a reliable level. Establishing such an emergency response decision making model using the method proposed in the present study in the mitigation stage will help the process. Among the chemical accident emergency management stages, constructing a database for the model, and using the model as a tool for quick decision making for an emergency evacuation order, is also thought to be helpful in the establishment and implementation of emergency response plans for chemical accidents. Full article
Show Figures

Figure 1

17 pages, 7725 KiB  
Article
Cooling Crystallization with Complex Temperature Profiles on a Quasi-Continuous and Modular Plant
by Stefan Höving, Bastian Oldach and Norbert Kockmann
Processes 2022, 10(6), 1047; https://doi.org/10.3390/pr10061047 - 24 May 2022
Cited by 6 | Viewed by 3281
Abstract
Volatile markets and increasing demands for quality and fast availability of specialty chemical products have motivated the rise of small-scale, integrated, and modular continuous processing plants. As a significant unit operation used for product isolation and purification, cooling crystallization is part of this [...] Read more.
Volatile markets and increasing demands for quality and fast availability of specialty chemical products have motivated the rise of small-scale, integrated, and modular continuous processing plants. As a significant unit operation used for product isolation and purification, cooling crystallization is part of this trend. Here, the small-scale and integrated quasi-continuous filter belt crystallizer (QCFBC) combines cooling crystallization, solid-liquid separation, and drying on a single apparatus. This contribution shows the general working principle, different operation modes, and possibilities of temperature control with the modular setup. For precise temperature control in cooling crystallization, Peltier elements show promising results in a systematic study of different operation parameters. Sucrose/water was used as a model substance system. The results confirm that seed crystal properties are the most important parameter in crystallization processes. Additionally, an oscillating temperature profile has a narrowing effect on the crystal size distribution (CSD). The integrated, small-scale, and modular setup of the QCFBC offers high degrees of flexibility, process control, and adaptability to cope with future market demands. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Graphical abstract

16 pages, 11855 KiB  
Article
Hydrothermal Pretreatment of Wheat Straw—Evaluating the Effect of Substrate Disintegration on the Digestibility in Anaerobic Digestion
by Timo Zerback, Britt Schumacher, Sören Weinrich, Benedikt Hülsemann and Michael Nelles
Processes 2022, 10(6), 1048; https://doi.org/10.3390/pr10061048 - 24 May 2022
Cited by 14 | Viewed by 2579
Abstract
The increasing demand for renewable energy sources and demand-oriented electricity provision makes anaerobic digestion (AD) one of the most promising technologies. In addition to energy crops, the use of lignocellulosic residual and waste materials from agriculture is becoming increasingly important. However, AD of [...] Read more.
The increasing demand for renewable energy sources and demand-oriented electricity provision makes anaerobic digestion (AD) one of the most promising technologies. In addition to energy crops, the use of lignocellulosic residual and waste materials from agriculture is becoming increasingly important. However, AD of such feedstocks is often associated with difficulties due to the high content of lignocellulose and its microbial persistence. In the present work, the effect of hydrothermal pretreatment (HTP) on the digestibility of wheat straw is investigated and evaluated. Under different HTP temperatures (160–180 °C) and retention times (15–45 min), a significant increase in biomethane potential (BMP) can be observed in all cases. The highest BMP (309.64 mL CH4 g−1 volatile solid (VS) is achieved after pretreatment at 160 °C for 45 min, which corresponds to an increase of 19% of untreated wheat straw. The results of a multiple linear regression model show that the solubilization of organic materials is influenced by temperature and time. Furthermore, using two different first-order kinetic models, an enhancement of AD rate during hydrolysis due to pretreatment is observed. However, the increasing intensity of pretreatment conditions is accompanied by a decreasing trend in the conversion of intermediates to methane. Full article
(This article belongs to the Special Issue New Frontiers in Anaerobic Digestion (AD) Processes)
Show Figures

Figure 1

19 pages, 4161 KiB  
Article
Molecular Analysis of Soil Bacterial Community Structures for Environmental Risk Assessment with Varieties of Genetically Modified Soybean and Hot Pepper
by Hyosun Lee, Jeongpyo Yoon and Dong-Uk Kim
Processes 2022, 10(5), 1037; https://doi.org/10.3390/pr10051037 - 23 May 2022
Cited by 1 | Viewed by 1973
Abstract
With the advance in gene technology, genetically modified (GM) crops have increased in recent years. GM crops offer us various benefits. However, there are potential risks of GM crops for the environment. In this study, the impacts of transgenic plants on soil microbial [...] Read more.
With the advance in gene technology, genetically modified (GM) crops have increased in recent years. GM crops offer us various benefits. However, there are potential risks of GM crops for the environment. In this study, the impacts of transgenic plants on soil microbial community structures were assessed. Two varieties of soybean (Glycine max L.) and hot pepper (Capsicum annuum L.), which introduced the herbicide-resistant gene, bar, were used in this study. The effects of GM crops on soil microbial community structures were investigated using a cultural method, the denaturing gradient gel electrophoresis (DGGE) procedure, and 16S rRNA gene sequencing on the Illumina platform. Additionally, the persistence of transgenes was monitored using a quantitative real-time PCR procedure. The cultural method, DGGE analysis, and the amplicon-based community profile indicated that soil microbial communities were not significantly different between GM and non-GM lines. The level of the bar gene in GM soybean plots greatly increased when the crops were actively growing, but thereafter gradually decreased to the initial level. Meanwhile, the level of the bar gene in GM hot pepper plots repeatedly increased and decreased according to the flowering stages. These results indicated that soil microbial community structures were not significantly affected. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

17 pages, 1609 KiB  
Article
Improvement of As(V) Adsorption by Reduction of Granular to Micro-Sized Ferric Hydroxide
by Vicenç Martí, Irene Jubany, Lidia Fernández-Rojo, David Ribas, José Antonio Benito, Brian Diéguez and Ada Ginesta
Processes 2022, 10(5), 1029; https://doi.org/10.3390/pr10051029 - 22 May 2022
Cited by 3 | Viewed by 2033
Abstract
The remediation of groundwater containing arsenic is a problem that has been addressed using adsorption processes with granulated materials in columns, but the remediation itself could be improved by using micro-sized adsorbents in stirred systems. In this study, arsenate (As(V)) batch adsorption experiments [...] Read more.
The remediation of groundwater containing arsenic is a problem that has been addressed using adsorption processes with granulated materials in columns, but the remediation itself could be improved by using micro-sized adsorbents in stirred systems. In this study, arsenate (As(V)) batch adsorption experiments were performed using granular ferric hydroxide (GFH) and two derived micro-sized materials. Reduced-size adsorbents were produced by energetic ball milling, giving final sizes of 0.1–2 µm (OF-M samples) and ultra-sonication, producing final sizes of 2–50 µm (OF-U samples). Equilibrium isotherm studies showed that the Langmuir model was a good fit for the three sorbents, with the highest maximum adsorption capacity (qmax) for OF-U and the lowest for OF-M. The adsorption of the two groundwater samples occurred according to the obtained equilibrium isotherms and indicated the absence of interfering agents for the three adsorbents. Batch kinetics tests in stirred beakers followed a pseudo second-order model and indicated that the kinetics of the OF-U sorbent was faster than the kinetics of the GFH sorbent. The tests also showed an increase in the qe values for the reduced-size sorbent. The application of ultrasonication to the GFH produced an increase of 23 % in the qmax and b term and an increase of 34-fold for the kinetic constant (k2) in the stirred batch systems tested. These results suggest that this new approach, based on ultra-sonication, has the potential for improving the adsorption of arsenic in groundwater. Full article
(This article belongs to the Special Issue Novel Adsorbent for Environmental Remediation)
Show Figures

Figure 1

21 pages, 4097 KiB  
Article
Study of Oxidation of Ciprofloxacin and Pefloxacin by ACVA: Identification of Degradation Products by Mass Spectrometry and Bioautographic Evaluation of Antibacterial Activity
by Barbara Żuromska-Witek, Paweł Żmudzki, Marek Szlósarczyk, Michał Abram, Anna Maślanka and Urszula Hubicka
Processes 2022, 10(5), 1022; https://doi.org/10.3390/pr10051022 - 20 May 2022
Cited by 1 | Viewed by 2897
Abstract
The new RP-HPLC-DAD method for the determination of ciprofloxacin and pefloxacin, next to their degradation products after the oxidation reaction with 4,4′-azobis(4-cyanopentanoic acid) (ACVA) was developed. The method was validated according to the guidelines of the International Council for Harmonization of Technical Requirements [...] Read more.
The new RP-HPLC-DAD method for the determination of ciprofloxacin and pefloxacin, next to their degradation products after the oxidation reaction with 4,4′-azobis(4-cyanopentanoic acid) (ACVA) was developed. The method was validated according to the guidelines of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) and meets the acceptance criteria. The experimental data indicate that the course of the oxidation process depends on the type of fluoroquinolone (FQ), the incubation time and temperature. The performed kinetic evaluation allowed us to state that the oxidation of FQs proceeds according to the second-order kinetics. The degradation products of the FQs were identified using the UHPLC-MS/MS method and their structures were proposed. The results obtained by the TLC-direct bioautography technique allowed us to state that the main ciprofloxacin and pefloxacin oxidation products probably retained antibacterial activity against Escherichia coli. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

14 pages, 3928 KiB  
Article
Numerical Modeling and Simulation of Blood Flow in a Rat Kidney: Coupling of the Myogenic Response and the Vascular Structure
by Wei Deng and Ken-ichi Tsubota
Processes 2022, 10(5), 1005; https://doi.org/10.3390/pr10051005 - 18 May 2022
Cited by 2 | Viewed by 2277
Abstract
A numerical simulation was carried out to investigate the blood flow behavior (i.e., flow rate and pressure) and coupling of a renal vascular network and the myogenic response to various conditions. A vascular segment and an entire kidney vascular network were modeled by [...] Read more.
A numerical simulation was carried out to investigate the blood flow behavior (i.e., flow rate and pressure) and coupling of a renal vascular network and the myogenic response to various conditions. A vascular segment and an entire kidney vascular network were modeled by assuming one single vessel as a straight pipe whose diameter was determined by Murray’s law. The myogenic response was tested on individual AA (afferent artery)–GC (glomerular capillaries)–EA (efferent artery) systems, thereby regulating blood flow throughout the vascular network. Blood flow in the vascular structure was calculated by network analysis based on Hagen–Poiseuille’s law to various boundary conditions. Simulation results demonstrated that, in the vascular segment, the inlet pressure Pinlet and the vascular structure act together on the myogenic response of each individual AA–GC–EA subsystem, such that the early-branching subsystems in the vascular network reached the well-regulated state first, with an interval of the inlet as Pinlet = 10.5–21.0 kPa, whereas the one that branched last exhibited a later interval with Pinlet = 13.0–24.0 kPa. In the entire vascular network, in contrast to the Pinlet interval (13.0–20.0 kPa) of the unified well-regulated state for all AA–GC–EA subsystems of the symmetric model, the asymmetric model exhibited the differences among subsystems with Pinlet ranging from 12.0–17.0 to 16.0–20.0 kPa, eventually achieving a well-regulated state of 13.0–18.5 kPa for the entire kidney. Furthermore, when Pinlet continued to rise (e.g., 21.0 kPa) beyond the vasoconstriction range of the myogenic response, high glomerular pressure was also related to vascular structure, where PGC of early-branching subsystems was 9.0 kPa and of late-branching one was 7.5 kPa. These findings demonstrate how the myogenic response regulates renal blood flow in vascular network system that comprises a large number of vessel elements. Full article
Show Figures

Figure 1

25 pages, 8696 KiB  
Article
Numerical Study of the Effect of the Reynolds Number and the Turbulence Intensity on the Performance of the NACA 0018 Airfoil at the Low Reynolds Number Regime
by Jan Michna and Krzysztof Rogowski
Processes 2022, 10(5), 1004; https://doi.org/10.3390/pr10051004 - 18 May 2022
Cited by 12 | Viewed by 6067
Abstract
In recent years, there has been an increased interest in the old NACA four-digit series when designing wind turbines or small aircraft. One of the airfoils frequently used for this purpose is the NACA 0018 profile. However, since 1933, for over 70 years, [...] Read more.
In recent years, there has been an increased interest in the old NACA four-digit series when designing wind turbines or small aircraft. One of the airfoils frequently used for this purpose is the NACA 0018 profile. However, since 1933, for over 70 years, almost no new experimental studies of this profile have been carried out to investigate its performance in the regime of small and medium Reynolds numbers as well as for various turbulence parameters. This paper discusses the effect of the Reynolds number and the turbulence intensity on the lift and drag coefficients of the NACA 0018 airfoil under the low Reynolds number regime. The research was carried out for the range of Reynolds numbers from 50,000 to 200,000 and for the range of turbulence intensity on the airfoil from 0.01% to 0.5%. Moreover, the tests were carried out for the range of angles of attack from 0 to 10 degrees. The uncalibrated γReθ transition turbulence model was used for the analysis. Our research has shown that airfoil performance is largely dependent on the Reynolds number and less on the turbulence intensity. For this range of Reynolds numbers, the characteristic of the lift coefficient is not linear and cannot be analyzed using a single aerodynamic derivative as for large Reynolds numbers. The largest differences in both aerodynamic coefficients are observed for the Reynolds number of 50,000. Full article
(This article belongs to the Special Issue Advancement in Computational Fluid Mechanics and Optimization Methods)
Show Figures

Figure 1

20 pages, 3388 KiB  
Article
Particle Residence Time Distribution in a Concurrent Multiphase Flow Reactor: Experiments and Euler-Lagrange Simulations
by Laura Unger, Juan Sebastián Gómez Bonilla, Dyrney Araújo dos Santos and Andreas Bück
Processes 2022, 10(5), 996; https://doi.org/10.3390/pr10050996 - 17 May 2022
Cited by 5 | Viewed by 4169
Abstract
The present work focuses on investigating the residence time behavior of microparticles in a concurrent downer reactor through experiments and numerical simulations. For the numerical simulations, a three-dimensional multiphase model was developed using the Euler-Lagrange approach. The experiments were performed in a 0.8 [...] Read more.
The present work focuses on investigating the residence time behavior of microparticles in a concurrent downer reactor through experiments and numerical simulations. For the numerical simulations, a three-dimensional multiphase model was developed using the Euler-Lagrange approach. The experiments were performed in a 0.8 m-long steel reactor with gravitational particle injection. The effects of different operating conditions, e.g., the sheath gas velocity on the particle residence time distribution were assessed. An increase in the sheath gas flow rate led to a decrease in the peak residence time, although the maximum residence time increased. Regarding the lowest sheath gas flow rate, the particles’ peak residence time was twice as high compared to the peak residence time within the highest flow rate. The particles’ residence time curves presented a broad distribution coinciding with the size distribution of the powder. The numerical results agreed with the experimental data; thus, this study presents a numerical model for predicting the particle residence time behavior in a concurrent downer reactor. Furthermore, the numerical simulations contributed to a better understanding of the particle residence time behavior inside a concurrent downer reactor which is essential for optimizing thermal rounding processes. Dimensionless correlations for the observed effects are developed. Full article
Show Figures

Figure 1

13 pages, 1063 KiB  
Article
Changes in Volatile Compounds during Grape Brandy Production from ‘Cabernet Sauvignon’ and ‘Syrah’ Grape Varieties
by Ante Lončarić, Mićo Patljak, Ante Blažević, Antun Jozinović, Jurislav Babić, Drago Šubarić, Anita Pichler, Ivana Flanjak, Toni Kujundžić and Borislav Miličević
Processes 2022, 10(5), 988; https://doi.org/10.3390/pr10050988 - 16 May 2022
Cited by 4 | Viewed by 2725
Abstract
Grape-based brandies are one of the most popular alcoholic beverages in the world. The most popular one, Cognac, comes from the Charentes region of Southwest France, and it is mostly produced from the grape variety ‘Ugni Blanc’. However, wines destined for [...] Read more.
Grape-based brandies are one of the most popular alcoholic beverages in the world. The most popular one, Cognac, comes from the Charentes region of Southwest France, and it is mostly produced from the grape variety ‘Ugni Blanc’. However, wines destined for the elaboration of wine spirits also come from different white grape varieties; ‘Colombard’, ‘Folle Blanche’, ‘Montils’, and ‘Semillon’. In this study, the possibility of using the red grape varieties ‘Cabernet Sauvignon’ and ‘Syrah’ was investigated with an emphasis on the change of volatile compounds during the production process. During production, some specific volatile compounds such as 2-hexenal, 3-octanone, isopropyl myristate, ethyl palmitate, ethyl oleate, phenethyl acetate, 1-hexanol, and β-damascenone could be attributed to the primary aroma generated from the grape varieties. During the vinification and fermentation process, the development of ethyl hexanoate, ethyl octanoate, 3-methylbutanol, acetic acid, and octanoic acid occurred. Finally, 3-methylbutanol and predominant esters, ethyl hexanoate, ethyl octanoate, ethyl decanoate, and ethyl laurate, were generated during the distillation and maturation process. The composition and concentration of determined predominant esters in produced brandies suggest that both brandies have volatile profiles comparable to some of the world’s most popular brandies. Full article
Show Figures

Figure 1

11 pages, 1500 KiB  
Article
Processing of Carob Kernels to Syrup by Ultrasound-Assisted Extraction
by Maria Lisa Clodoveo, Pasquale Crupi, Marilena Muraglia and Filomena Corbo
Processes 2022, 10(5), 983; https://doi.org/10.3390/pr10050983 - 16 May 2022
Cited by 6 | Viewed by 2577
Abstract
Carob syrup is one of the most important carob products, which can have applications in pastry and confectionery, as a fruit preservative, but also in the pharmaceutical field because of the antimicrobial activity due to its polyphenol content. Carob syrup is traditionally made [...] Read more.
Carob syrup is one of the most important carob products, which can have applications in pastry and confectionery, as a fruit preservative, but also in the pharmaceutical field because of the antimicrobial activity due to its polyphenol content. Carob syrup is traditionally made through a very time-consuming process, involving solid–liquid extraction in boiling water and concentration at a high temperature (>100 °C), which potentially causes the degradation of the active compounds (i.e., procyanidins or flavonol glycosides). Therefore, in this work, an alternative and less drastic method based on ultrasound technology was proposed to produce carob syrup. Processing conditions (i.e., time, temperature, and liquid–solid ratio) influencing the extraction of total soluble solids (TSS) and total phenolic compounds (TPC) were optimized using a central composite design coupled to response surface methodology. Reliable mathematical models allowed us to predict the highest TSS (24 ± 2 °Brix) and TPC (1.7 ± 0.5 mg/mL) values that could be obtained at 15 min, 35 °C, and 2 mL/g. Finally, a different HPLC-DAD phenolic pattern was determined between syrups produced by traditional and ultrasound methods; epicatechin, 4-hydroxycoumaric acid, and ferulic acid were more concentrated in the former, while procyanidin B2, myricitrin, and quercitrin were prevalent in the latter one. Full article
Show Figures

Graphical abstract

15 pages, 3717 KiB  
Article
Development of Evaluation Methods for Anti-Glycation Activity and Functional Ingredients Contained in Coriander and Fennel Seeds
by Akiyoshi Sawabe, Atsuyuki Yamashita, Mei Fujimatsu and Ryuji Takeda
Processes 2022, 10(5), 982; https://doi.org/10.3390/pr10050982 - 14 May 2022
Cited by 2 | Viewed by 2389
Abstract
Spices are known to have various physiological functions. We focused on the anti-glycation effects of spices, researched anti-glycation active ingredients in coriander (Coriandrum sativum L.) and fennel (Foeniculum vulgare) seeds, and conducted experiments using human skin-derived fibroblast TIG-110 cells as [...] Read more.
Spices are known to have various physiological functions. We focused on the anti-glycation effects of spices, researched anti-glycation active ingredients in coriander (Coriandrum sativum L.) and fennel (Foeniculum vulgare) seeds, and conducted experiments using human skin-derived fibroblast TIG-110 cells as a model of glycation. We isolated 11 compounds from two spice seeds and found several substances that showed anti-glycation activity. A new compound (5,5′-diallyl-2,2′-diglucopyranosyl-3,3′-dimethoxy diphenyl ether) was isolated from fennel seeds and showed high anti-glycation activity with an IC50 value of 0.08 mM, thereby indicating a high anti-glycosylation activity. In this study, we established a glyoxal (GO)-induced glycation test method for human skin cells, confirmed the anti-glycation effect of spice seeds using this glycation induction model, and found that the exposure of TIG-110 human skin-derived fibroblast cells to GO reduced cell viability. The most stable conditions for cell viability were found to be a GO concentration of 1.25 mM and a culture time of 48 h. We evaluated extracts and isolates of spice seeds using this model as a model test for glycation induction. We conducted qualitative and quantitative analyses of carboxymethyl lysine (CML), a type of AGE, to determine the relationship between cell viability and AGEs. The relationship between cell viability and the amount of CML was correlated. Establishing a glycation induction model test using skin cells makes it possible to quickly screen extracts of natural ingredients in the future. Moreover, the results of this model showed that extracts of two spice seeds and their isolates have high anti-glycation activity, and they are expected to be used as cosmetics, health foods, and pharmaceutical ingredients. Full article
(This article belongs to the Special Issue Plants as Functional Food Ingredients and Food Preservative)
Show Figures

Figure 1

16 pages, 4697 KiB  
Article
Thermogravimetric Study on Peat Catalytic Pyrolysis for Potential Hydrocarbon Generation
by Mohammed A. Khelkhal, Semen E. Lapuk, Aleksey V. Buzyurov, Tatiana O. Krapivnitskaya, Nikolay Yu. Peskov, Andrey N. Denisenko and Alexey V. Vakhin
Processes 2022, 10(5), 974; https://doi.org/10.3390/pr10050974 - 13 May 2022
Cited by 4 | Viewed by 1834
Abstract
Peat has attracted considerable interest as a potential source of alternative fuel in terms of improving hydrocarbons production and satisfying market demand. The next decade is likely to witness a raise in its exploitation. Nevertheless, the characteristics of peat pyrolysis process, via which [...] Read more.
Peat has attracted considerable interest as a potential source of alternative fuel in terms of improving hydrocarbons production and satisfying market demand. The next decade is likely to witness a raise in its exploitation. Nevertheless, the characteristics of peat pyrolysis process, via which many experts expect a considerable generation of hydrocarbons, have not been dealt with in depth. In the present study we have applied thermal analysis combined with isoconversional and model methods for clarifying the kinetic and thermodynamic aspects of the process of generating hydrocarbons from peat via pyrolysis in the absence and presence of iron tallates as a catalytic agent. The obtained results showed a positive effect of the opted catalyst on the process of peat pyrolysis. It has been shown that the catalyst is able to reduce the energy of activation of peat pyrolysis process. Moreover, the Gibbs energy, enthalpy and entropy of complex formation values have been found lower in the presence of iron tallates for all the applied isoconversional methods (Friedman and KAS). The evidence from the present study points toward the beneficial effect generated from the utilization of iron tallates in the processes of hydrocarbons generation from peat for improving energy production in the future. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 7283 KiB  
Article
Design Framework and Laboratory Experiments for Helix and Slinky Type Ground Source Heat Exchangers for Retrofitting Projects
by Stephan Kling, Edith Haslinger, Michael Lauermann, Henk Witte, Christoph Reichl, Alexander Steurer and Constantin Dörr
Processes 2022, 10(5), 959; https://doi.org/10.3390/pr10050959 - 11 May 2022
Cited by 2 | Viewed by 1575
Abstract
The focus of the experimental work was on shallow spiral geothermal heat exchanger configurations. Real-scale experiments were carried out for vertically oriented spiral collectors (helix) in sand and soil. One objective was to develop a measurement concept in laboratory environment to create a [...] Read more.
The focus of the experimental work was on shallow spiral geothermal heat exchanger configurations. Real-scale experiments were carried out for vertically oriented spiral collectors (helix) in sand and soil. One objective was to develop a measurement concept in laboratory environment to create a framework for a validated database. This database serves as the basis for further and new development of engineering design tools. To achieve the highest possible data-point density in the observed environment, temperature sensors and a fiber-optic temperature measurement system (DTS) were used. Soil probes were taken in situ before and after the measurements and analyzed at a thermophysical laboratory to determine material properties. The heat flow was controlled by an electric heating cable, which was installed in the form of a spiral-shaped heat exchanger in a 1 m³ container. To guarantee constant boundary conditions, the measurements were carried out in a climate chamber at a defined ambient temperature. The evaluation of the transient response behavior is spatially resolved. The results are coordinate-based temperature points, which describe temperature gradients in all axes of the container over time, which are combined with known soil properties. The collected data was used to develop computational fluid dynamic (CFD) models, which are used to extend the variety of geometry and soil configurations for developing new design tools. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 3110 KiB  
Article
Digital Marketing Enhancement of Cryptocurrency Websites through Customer Innovative Data Process
by Damianos P. Sakas, Nikolaos T. Giannakopoulos, Nikos Kanellos and Christos Tryfonopoulos
Processes 2022, 10(5), 960; https://doi.org/10.3390/pr10050960 - 11 May 2022
Cited by 20 | Viewed by 4406
Abstract
Today, more than ever, the popularity of decentralized payment systems has risen, creating an outbreak of new cryptocurrencies hitting the market. Unique websites have been staged for each cryptocurrency, where information and means for mining cryptocurrencies are available daily. People visit those cryptocurrency [...] Read more.
Today, more than ever, the popularity of decentralized payment systems has risen, creating an outbreak of new cryptocurrencies hitting the market. Unique websites have been staged for each cryptocurrency, where information and means for mining cryptocurrencies are available daily. People visit those cryptocurrency websites either from desktop or mobile devices. Thus, the impulsion for appropriate promotion of cryptocurrency websites and customer factors affecting it rises. The above process increases cryptocurrency organizations’ website visibility, raising the need for customer relationships and satisfaction optimization concerning organizations’ supply chain strategy. Research data were collected from 10 well-known cryptocurrency websites, regarding mobile and desktop devices, in 180 days, regarding on-site web analytics. Therefore, a model consisting of three stages was applied. Starting phase of the model pertains to statistical and regression analysis of cryptocurrency web analytics, followed by Fuzzy Cognitive Mapping and Agent-Based Model deployment. Throughout this study, methods for promoting cryptocurrency websites can be deduced from assessing specific website metrics and device preferences. Research results indicate that web analytics give a clearer image of customer behavior in cryptocurrency websites and, therefore, provide opportunities for further website optimization through increased web traffic and digital reputation. Full article
Show Figures

Figure 1

12 pages, 1311 KiB  
Article
Automation of Modeling and Calibration of Integrated Preparative Protein Chromatography Systems
by Simon Tallvod, Niklas Andersson and Bernt Nilsson
Processes 2022, 10(5), 945; https://doi.org/10.3390/pr10050945 - 10 May 2022
Cited by 6 | Viewed by 2446
Abstract
With the increasing global demand for precise and efficient pharmaceuticals and the biopharma industry moving towards Industry 4.0, the need for advanced process integration, automation, and modeling has increased as well. In this work, a method for automatic modeling and calibration of an [...] Read more.
With the increasing global demand for precise and efficient pharmaceuticals and the biopharma industry moving towards Industry 4.0, the need for advanced process integration, automation, and modeling has increased as well. In this work, a method for automatic modeling and calibration of an integrated preparative chromatographic system for pharmaceutical development and production is presented. Based on a user-defined system description, a system model was automatically generated and then calibrated using a sequence of experiments. The system description and model was implemented in the Python-based preparative chromatography control software Orbit. Full article
(This article belongs to the Special Issue Towards Autonomous Operation of Biologics and Botanicals)
Show Figures

Figure 1

24 pages, 548 KiB  
Review
Recombinant Protein Technology in the Challenging Era of Coronaviruses
by Ace Bryan Sotelo Cabal and Tzong-Yuan Wu
Processes 2022, 10(5), 946; https://doi.org/10.3390/pr10050946 - 10 May 2022
Cited by 5 | Viewed by 4944
Abstract
Coronaviruses have caused devastation in both human and animal populations, affecting both health and the economy. Amidst the emergence and re-emergence of coronaviruses, humans need to surmount the health and economic threat of coronaviruses through science and evidence-based approaches. One of these approaches [...] Read more.
Coronaviruses have caused devastation in both human and animal populations, affecting both health and the economy. Amidst the emergence and re-emergence of coronaviruses, humans need to surmount the health and economic threat of coronaviruses through science and evidence-based approaches. One of these approaches is through biotechnology, particularly the heterologous production of biopharmaceutical proteins. This review article briefly describes the genome, general virion morphology, and key structural proteins of different coronaviruses affecting animals and humans. In addition, this review paper also presents the different systems in recombinant protein technology such as bacteria, yeasts, plants, mammalian cells, and insect/insect cells systems used to express key structural proteins in the development of countermeasures such as diagnostics, prophylaxis, and therapeutics in the challenging era of coronaviruses. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

18 pages, 6595 KiB  
Article
A Cleaner Delignification of Urban Leaf Waste Biomass for Bioethanol Production, Optimised by Experimental Design
by Gustavo Kildegaard, María del Pilar Balbi, Gabriel Salierno, Miryan Cassanello, Cataldo De Blasio and Miguel Galvagno
Processes 2022, 10(5), 943; https://doi.org/10.3390/pr10050943 - 10 May 2022
Cited by 12 | Viewed by 2831
Abstract
This work is focused on optimising a low-temperature delignification as holocellulose purification pretreatment of Platanus acerifolia leaf waste for second-bioethanol production. Delignification was accomplished by acid-oxidative digestion using green reagents: acetic acid and 30% hydrogen peroxide 1:1. The effect of reaction time (30–90 [...] Read more.
This work is focused on optimising a low-temperature delignification as holocellulose purification pretreatment of Platanus acerifolia leaf waste for second-bioethanol production. Delignification was accomplished by acid-oxidative digestion using green reagents: acetic acid and 30% hydrogen peroxide 1:1. The effect of reaction time (30–90 min), temperature (60–90 °C), and solid loading (5–15 g solid/20 g liquid) on delignification and solid fraction yield were studied. The process parameters were optimised using the Box–Behnken experimental design. The highest attained lignin removal efficiency was larger than 80%. The optimised conditions of delignification, while maximising holocellulose yield, pointed to using the minimum temperature of the examined range. Analysis of variance on the solid fraction yield and the lignin removal suggested a linear model with a negative influence of the temperature on the yield. Furthermore, a negative effect of the solid loading and low effect of temperature and time was found on the degree of delignification. Then the temperature range was extended back to 60 °C, providing 71% holocellulose yield and 70% while improving energy efficiency by working at a lower temperature. Successful lignin removal was confirmed using confocal laser scanning microscopy. As evaluated by scanning electron microscopy, the solid structure presented an increased exposition of the cellulose fibre structure. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

21 pages, 8733 KiB  
Article
Wet Compression Study for an Aero-Thermodynamic Performance Analysis of a Centrifugal Compressor at Design and Off-Design Points
by Hyun-Su Kang, Sung-Yeon Kim and Youn-Jea Kim
Processes 2022, 10(5), 936; https://doi.org/10.3390/pr10050936 - 9 May 2022
Cited by 1 | Viewed by 2453
Abstract
In this study, to analyze the effect of wet compression technology on the aero-thermodynamic performance of a centrifugal compressor, a numerical analysis study was conducted on the design point and off-design point. Wet compression technology sprays water droplets at the inlet of the [...] Read more.
In this study, to analyze the effect of wet compression technology on the aero-thermodynamic performance of a centrifugal compressor, a numerical analysis study was conducted on the design point and off-design point. Wet compression technology sprays water droplets at the inlet of the compressor. During the compression process, water droplets evaporate, reducing the heat of compression and reducing the compression work, which improves the efficiency of the compressor. In wet compression technology, detailed research is needed for the application to compressors because the droplet behavior affects the internal flow. The main parameters for wet compression technology are the droplet size and injection rate selection, and the flow inside the compressor changed by the droplet behavior was analyzed. When the droplet size and injection rate were changed at the design point and the off-design point, it was confirmed that a small droplet size was effective in both areas, and it was confirmed that the performance improved as the flow rate increased. The internal flow changed greatly depending on the size of the droplet. As a result, the centrifugal compressor to which the wet compression technology was applied had a lower outlet temperature than dry compression at both the design point and the off-design point and had increases in the pressure ratio and efficiency. However, the surge margin decreased by about 2% in the surge region. The reason is that due to high-speed rotation, particles move in the outer diameter direction and are driven into a tip-leakage flow, and many stagnant flows occur without flowing into the main flow. Through the study results, it was possible to understand the effects of wet compression technology on the performance and efficiency increase of centrifugal compressors and the effects of particle behavior on the internal flow of the compressor at the off-design point. Full article
(This article belongs to the Special Issue CFD Applications in Energy Engineering Research and Simulation)
Show Figures

Figure 1

21 pages, 10798 KiB  
Article
The Characteristic of High-Speed Centrifugal Refrigeration Compressor with Different Refrigerants via CFD Simulation
by Kuo-Shu Hung, Kung-Yun Ho, Wei-Chung Hsiao and Yean-Der Kuan
Processes 2022, 10(5), 928; https://doi.org/10.3390/pr10050928 - 7 May 2022
Cited by 5 | Viewed by 3246
Abstract
This study used Computational Fluid Dynamics (CFD) to simulate and analyze the working fluid in magnetic centrifugal refrigerant compressors using R-134a to mixed refrigerant: R-513A and HFO (Hydrofluoroolefins) Hydrofluoroolefin refrigerant: R-1234yf, and the impact on integrated part-load performance, Integrated Part Load Value (IPLV) [...] Read more.
This study used Computational Fluid Dynamics (CFD) to simulate and analyze the working fluid in magnetic centrifugal refrigerant compressors using R-134a to mixed refrigerant: R-513A and HFO (Hydrofluoroolefins) Hydrofluoroolefin refrigerant: R-1234yf, and the impact on integrated part-load performance, Integrated Part Load Value (IPLV) and internal flow field. This study used a single-stage 280 USRT maglev centrifugal refrigerant compressor as a simulation model. Three different refrigerants were used: R-134a, R-513A, and R-1234yf, as presented in the National Institute of Standards and Technology (NIST) real gas database. The refrigerant was used to set the IPLV working conditions and change the compressor speed and mass flow rate to simulate the compressor’s characteristic curve after replacing the refrigerant. The compressor working conditions were the fixed refrigeration cycle condensation and evaporation following the same capacity standards. This study used the CFD software by Ansys software company to simulate the flow field. The k-omega turbulence software was used to model the turbulence. The results show that the maglev centrifugal refrigerant compressor efficiency dropped significantly when the refrigerant was directly replaced. Based on R-134a, the full load efficiency of R-1234yf dropped 13.21%, the full load efficiency of R-513A dropped 9.97%, and the partial load efficiency was similar to R-134a. Full article
Show Figures

Figure 1

16 pages, 2711 KiB  
Article
Continuous-Flow Magnetic Fractionation of Red Blood Cells Based on Hemoglobin Content and Oxygen Saturation—Clinical Blood Supply Implications and Sickle Cell Anemia Treatment
by Mitchell Weigand, Jenifer Gomez-Pastora, Andre Palmer, Maciej Zborowski, Payal Desai and Jeffrey Chalmers
Processes 2022, 10(5), 927; https://doi.org/10.3390/pr10050927 - 7 May 2022
Cited by 5 | Viewed by 2289
Abstract
Approximately 36,000 units of red blood cells (RBCs) are used every day in the U.S. and there is a great challenge for hospitals to maintain a reliable supply, given the 42-day expiration period from the blood donation date. For many years, research has [...] Read more.
Approximately 36,000 units of red blood cells (RBCs) are used every day in the U.S. and there is a great challenge for hospitals to maintain a reliable supply, given the 42-day expiration period from the blood donation date. For many years, research has been conducted to develop ex vivo storage solutions that limit RBC lysis and maintain a high survival rate of the transfused cells. However, little attention is directed towards potential fractionation methods to remove unwanted cell debris or aged blood cells from stored RBC units prior to transfusion, which could not only expand the ex vivo shelf life of RBC units but also avoid adverse events in transfused patients. Such fractionation methods could also limit the number of transfusions required for treating certain pathologies, such as sickle cell disease (SCD). In this work, magnetic fractionation is studied as a potential technology to fractionate functional and healthy RBCs from aged or sickle cells. It has been reported that during ex vivo RBC storage, RBCs lose hemoglobin (Hb) and lipid content via formation of Hb-containing exosomes. Given the magnetic character of deoxygenated- or met-Hb, in this work, we propose the use of a quadrupole magnetic sorter (QMS) to fractionate RBCs based on their Hb content from both healthy stored blood and SCD blood. In our QMS, a cylindrical microchannel placed inside the center of the quadrupolar magnets is subjected to high magnetic fields and constant field gradients (286 T/m), which causes the deflection of the paramagnetic, Hb-enriched, and functional RBCs from their original path and their collection into a different outlet. Our results demonstrated that although we could obtain a significant difference in the magnetic mobility of the sorted fractions (corresponding to a difference in more than 1 pg of Hb per cell), there exists a tradeoff between throughput and purity. Therefore, this technology when optimized could be used to expand the ex vivo shelf life of RBC units and avoid adverse events in transfused individuals or SCD patients requiring blood exchange therapy. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

24 pages, 14658 KiB  
Review
Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions
by Keisuke Tsuchiya, Takashi Kurohara, Kiyoshi Fukuhara, Takashi Misawa and Yosuke Demizu
Processes 2022, 10(5), 924; https://doi.org/10.3390/pr10050924 - 6 May 2022
Cited by 10 | Viewed by 3272
Abstract
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides [...] Read more.
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-protein interactions because they enable multipoint molecular recognition, which is difficult to achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-based foldamers and stapled peptides with a view to their applications in drug discovery, including our recent progress. Full article
(This article belongs to the Special Issue The Amazing World of Peptide Engineering)
Show Figures

Figure 1

14 pages, 1585 KiB  
Article
Anti-Hyperglycemic Effect of Magnesium-Enhanced Alkaline-Reduced Water on High Glucose-Induced Oxidative Stress in Renal Tubular Epithelial Cells
by Subham Sharma, Johny Bajgai, Jayson M. Antonio, Ailyn Fadriquela, Thuy Thi Trinh, Md. Habibur Rahman, Kchorng Vira, Abdul-Nasir Sofian, Cheol-Su Kim and Kyu-Jae Lee
Processes 2022, 10(5), 919; https://doi.org/10.3390/pr10050919 - 6 May 2022
Cited by 3 | Viewed by 3037
Abstract
Diabetes is coupled with hyperglycemia, a state in which elevated glucose levels trigger oxidative stress (OS) in various body functions. One of the organs most afflicted by diabetes is the kidney. Despite this, specific treatments to mitigate the harmful effects of hyperglycemia-induced OS [...] Read more.
Diabetes is coupled with hyperglycemia, a state in which elevated glucose levels trigger oxidative stress (OS) in various body functions. One of the organs most afflicted by diabetes is the kidney. Despite this, specific treatments to mitigate the harmful effects of hyperglycemia-induced OS in the kidney have not been extensively explored. This study evaluates the anti-hyperglycemic efficacy of magnesium-enhanced alkaline-reduced water (MARW) in human kidney-2 (HK-2) cells. OS, mitogen-activated protein kinase (MAPK) signaling and fibrosis markers were assessed in high glucose (HG)-induced HK-2 cells, followed by treatment with experimental water for 24 h. Surprisingly, MARW rescued the vitality of HG-induced HK-2 cells, in contrast to that seen with other experimental waters. Additionally, MARW maintained reactive oxygen species, nitric oxide, catalase, glutathione peroxidase, hepatocyte growth factor and glucose uptake in HG-induced HK-2 cells but not in tap water and mineral water. Similarly, MARW downregulated the expression of MAPK and fibrosis-linked signaling proteins such as p-p38, phospho-c-Jun N-terminal kinase, α-smooth muscle actin, matrix metalloproteinase-3 and cleaved caspase 3 in HG-induced HK-2 cells. In conclusion, MARW protects HK-2 cells from the deleterious effects of HG by stabilizing antioxidant defenses and by signaling cascades related to metabolism, apoptosis and fibrosis. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

18 pages, 3447 KiB  
Article
Prediction of Horizontal Gas–Liquid Segregated Flow Regimes with an All Flow Regime Multifluid Model
by Marco Colombo, Andrea De Santis, Bruce C. Hanson and Michael Fairweather
Processes 2022, 10(5), 920; https://doi.org/10.3390/pr10050920 - 6 May 2022
Cited by 10 | Viewed by 2140
Abstract
The generalized multifluid modelling approach (GEMMA) has been developed to handle the multiplicity of flow regimes and the coexistence of interfaces of largely different scales in multiphase flows. The solver, based on the OpenFOAM reactingEulerFoam family of solvers, adds interface resolving-like capabilities to [...] Read more.
The generalized multifluid modelling approach (GEMMA) has been developed to handle the multiplicity of flow regimes and the coexistence of interfaces of largely different scales in multiphase flows. The solver, based on the OpenFOAM reactingEulerFoam family of solvers, adds interface resolving-like capabilities to the multifluid solver in the cells occupied by large interfaces. In this paper, GEMMA is further developed to predict stratified and slug flow regimes in horizontal ducts. The suppression of the turbulence and the wall-like behaviour of large interfaces is modelled with an additional dissipation source. This enables an accurate prediction of the velocity and of the turbulence kinetic energy in a stratified channel flow and the capturing of the formation and the travel of liquid slugs in an annulus. Large interfaces are identified and tracked, not only in the smooth and wavy stratified regimes but also in the much more perturbed interfaces of liquid slugs. The present work confirms GEMMA to be a reliable approach to provide all flow regime modelling capabilities. Further development will be focused on large interface momentum-transfer modelling, responsible for the overestimation of the interfacial shear and the limited liquid excursion during slugs, and the extension to interface break-up and the entrainment of bubbles and droplets, to handle the entire range of regimes encountered in horizontal flows. Full article
(This article belongs to the Special Issue Multifluid Computational Fluid Dynamic Simulation)
Show Figures

Figure 1

18 pages, 2934 KiB  
Article
An Agent-Based Approach for Make-To-Order Master Production Scheduling
by Faezeh Bagheri, Melissa Demartini, Alessandra Arezza, Flavio Tonelli, Massimo Pacella and Gabriele Papadia
Processes 2022, 10(5), 921; https://doi.org/10.3390/pr10050921 - 6 May 2022
Cited by 3 | Viewed by 2923
Abstract
In recent decades, manufacturers’ intense competitiveness to suit consumer expectations has compelled them to abandon the conventional workflow in favour of a more flexible one. This new trend increased the importance of master production schedule and make-to-order (MTO) strategy concepts. The former improves [...] Read more.
In recent decades, manufacturers’ intense competitiveness to suit consumer expectations has compelled them to abandon the conventional workflow in favour of a more flexible one. This new trend increased the importance of master production schedule and make-to-order (MTO) strategy concepts. The former improves overall planning and controls complexity. The latter enables the production businesses to reinforce their flexibility and produce customized products. In a production setting, fluctuating resource capacity restricts production line performance, and ignoring this fact renders planning inapplicable. The current research work addresses the MPS problem in the context of the MTO production environment. The objective is to resolve Rough-Cut Capacity Planning by considering resource capacity fluctuation to schedule the customer’s order with the minimum cost imposed by the company and customer side. Consequently, this study is an initial attempt to propose a mathematical programming approach, which provides the optimum result for small and medium-size problems. Regarding the combinatorial intrinsic of this kind of problem, the mathematical programming approach can no longer reach the optimum solution for a large-scale problem. To overcome this, an innovative agent-based heuristic has been proposed. Computational experiments on variously sized problems confirm the efficiency of the agent-based approach. Full article
(This article belongs to the Special Issue Process Control and Smart Manufacturing for Industry 4.0)
Show Figures

Figure 1

19 pages, 6552 KiB  
Article
Seed Train Intensification Using an Ultra-High Cell Density Cell Banking Process
by Jan Müller, Vivian Ott, Dieter Eibl and Regine Eibl
Processes 2022, 10(5), 911; https://doi.org/10.3390/pr10050911 - 5 May 2022
Cited by 12 | Viewed by 4603
Abstract
A current focus of biopharmaceutical research and production is seed train process intensification. This allows for intermediate cultivation steps to be avoided or even for the direct inoculation of a production bioreactor with cells from cryovials or cryobags. Based on preliminary investigations regarding [...] Read more.
A current focus of biopharmaceutical research and production is seed train process intensification. This allows for intermediate cultivation steps to be avoided or even for the direct inoculation of a production bioreactor with cells from cryovials or cryobags. Based on preliminary investigations regarding the suitability of high cell densities for cryopreservation and the suitability of cells from perfusion cultivations as inoculum for further cultivations, an ultra-high cell density working cell bank (UHCD-WCB) was established for an immunoglobulin G (IgG)-producing Chinese hamster ovary (CHO) cell line. The cells were previously expanded in a wave-mixed bioreactor with internal filter-based perfusion and a 1 L working volume. This procedure allows for cryovial freezing at 260 × 106 cells mL−1 for the first time. The cryovials are suitable for the direct inoculation of N−1 bioreactors in the perfusion mode. These in turn can be used to inoculate subsequent IgG productions in the fed-batch mode (low-seed fed-batch or high-seed fed-batch) or the continuous mode. A comparison with the standard approach shows that cell growth and antibody production are comparable, but time savings of greater than 35% are possible for inoculum production. Full article
Show Figures

Figure 1

17 pages, 1221 KiB  
Article
Yeast Biodiversity in Vineyard during Grape Ripening: Comparison between Culture Dependent and NGS Analysis
by Antonella Costantini, Enrico Vaudano, Laura Pulcini, Lara Boatti, Elisa Gamalero and Emilia Garcia-Moruno
Processes 2022, 10(5), 901; https://doi.org/10.3390/pr10050901 - 3 May 2022
Cited by 14 | Viewed by 2576
Abstract
In this study, the evolution of the yeast microflora present on the berry surface, during the ripening of Barbera grapes, was monitored. Sampling was performed in three vineyards located in the “Nizza” Barbera d’Asti DOC zone and different methodologies have been employed. A [...] Read more.
In this study, the evolution of the yeast microflora present on the berry surface, during the ripening of Barbera grapes, was monitored. Sampling was performed in three vineyards located in the “Nizza” Barbera d’Asti DOC zone and different methodologies have been employed. A culture-dependent method based on the identification of strains grown on solid media by ARDRA (Amplified Ribosomal DNA Restriction Analysis) and the D1-D2 domain of ribosomal 26S DNA capillary sequencing was coupled to NGS (Next Generation Sequencing) targeting ITS (Internal Transcribed Sequence) amplicons with the Illumina MiSeq platform. By using culture-dependent techniques, the most frequently detected species was the yeast-like fungus Aureobasidium pullulans, which was dominant in the culturable fraction. Among yeasts, the presence of oligotrophic basidiomycetes such as Cryptococcus spp., Rhodotorula graminis and Sporidiobolus pararoseus was observed at the beginning of ripening. Afterward, upon approaching the harvest, a succession of oxidative or weakly fermentative copiotrophic species occurs, such as Saturnispora diversa, Issatchenkia terricola, Hanseniaspora opuntiae, Starmerella bacillaris and Hanseniaspora uvarum. The massive sequencing revealed a larger number of species, respect to the culture-dependent data. Comparing the two different approaches used in this work, it is possible to highlight some similarities since Aureobasidium, Rhodotorula and Sporobolomyces were detected by both methods. On the contrary, genera Hanseniaspora, Issatchenkia and Saturnispora were revealed by culture-dependent methods, but not by NGS, while Saccharomyces spp. were identified, with low frequency, only by NGS. The integrated application of NGS sequencing and culture-dependent techniques provides a comprehensive view of mycodiversity in the wine-growing environment, especially for yeasts with low abundance. Full article
(This article belongs to the Special Issue Role of Yeast in Wine Fermentation Processes)
Show Figures

Figure 1

22 pages, 3398 KiB  
Article
Performing Multi-Objective Optimization Alongside Dimension Reduction to Determine Number of Clusters
by Melisa Mollaian, Gyula Dörgő and Ahmet Palazoglu
Processes 2022, 10(5), 893; https://doi.org/10.3390/pr10050893 - 1 May 2022
Viewed by 1638
Abstract
One of the consequences of the widespread automation of manufacturing operations has been the proliferation and availability of historical databases that can be exploited by analytical methods to improve process understanding. Data science tools such as dimension reduction and clustering are among many [...] Read more.
One of the consequences of the widespread automation of manufacturing operations has been the proliferation and availability of historical databases that can be exploited by analytical methods to improve process understanding. Data science tools such as dimension reduction and clustering are among many such approaches that can aid in the identification of unique process features and patterns that can be associated with faulty states. However, determining the number of such states still requires significant engineering knowledge and insight. In this study, a new unsupervised method is proposed that reveals the number of classes in a data set. The method utilizes a variety of dimension reduction techniques to create projections of a data set and performs multiple clustering operations on the lower-dimensional data as well as the original data. The relevant internal clustering metrics are incorporated into a multi-objective optimization problem to determine the solutions that simultaneously optimize all metrics. The cluster number that shows Pareto optimality based on the performance metrics is selected as the final one. The method is tested on three data sets with distinct features. The results demonstrate the ability of the proposed method to correctly identify the expected number of clusters. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

20 pages, 4460 KiB  
Article
The Effects of Logistics Websites’ Technical Factors on the Optimization of Digital Marketing Strategies and Corporate Brand Name
by Damianos P. Sakas, Dimitrios P. Reklitis, Panagiotis Trivellas, Costas Vassilakis and Marina C. Terzi
Processes 2022, 10(5), 892; https://doi.org/10.3390/pr10050892 - 1 May 2022
Cited by 23 | Viewed by 4133
Abstract
In a world overwhelmed with unstructured information, logistics companies increasingly depend on their websites to acquire new customers and maintain existing ones. Following this rationale, a series of technical elements may set the ground for differentiating one logistics website from another. Nevertheless, a [...] Read more.
In a world overwhelmed with unstructured information, logistics companies increasingly depend on their websites to acquire new customers and maintain existing ones. Following this rationale, a series of technical elements may set the ground for differentiating one logistics website from another. Nevertheless, a suitable digital marketing strategy should be adopted in order to build competitive advantage. In this paper, the authors attempt to respond by implementing an innovative methodology building on web analytics and big data. The first phase of the research collects data for 180 days from 7 world-leading logistics companies. The second phase presents the statistical analysis of the gathered data, including regression, correlations, and descriptive statistics. Subsequently, Fuzzy Cognitive Mapping (FCM) was employed to illustrate the cause-and-effect links among the metrics in question. Finally, a predictive simulation model is developed to show the intercorrelation among the metrics studied as well as various optimization strategies. Research findings reveal a significant correlation between the logistics websites’ technical factors and the growth of the corporate brand name. Full article
Show Figures

Figure 1

23 pages, 3412 KiB  
Article
Integrating Triple Bottom Line in Sustainable Chemical Supplier Selection: A Compromise Decision-Making-Based Spherical Fuzzy Approach
by Chia-Nan Wang, Chien-Chang Chou, Thanh-Tuan Dang, Hoang-Phu Nguyen and Ngoc-Ai-Thy Nguyen
Processes 2022, 10(5), 889; https://doi.org/10.3390/pr10050889 - 30 Apr 2022
Cited by 11 | Viewed by 3304
Abstract
As a consequence of increased awareness of environmental preservation and the associated rigorous regulations, the adoption of sustainable practices has become a crucial element for corporate organizations in regard to their supply chains. In the chemical industry, which is characterized by high risks, [...] Read more.
As a consequence of increased awareness of environmental preservation and the associated rigorous regulations, the adoption of sustainable practices has become a crucial element for corporate organizations in regard to their supply chains. In the chemical industry, which is characterized by high risks, high pollution, and high efficiency, these characteristics can help businesses analyze their long-term development and sustainability. The goal of this research is to analyze and choose possible suppliers based on their sustainability performance in the chemical sector. A methodology based on multi-criteria decision making (MCDM) is proposed for this evaluation, using spherical fuzzy analytical hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) methods, in which the novel spherical fuzzy sets theory is employed to present the ambiguous linguistic preferences of experts. In the first stage, an evaluation criteria system is identified through literature review and experts’ opinions. The SF-AHP is used to determine the criteria weights, while the CoCoSo method is utilized to select the right sustainable supplier. A case study in the chemical industry in Vietnam is presented to demonstrate the effectiveness of the proposed approach. From the SF-AHP findings, “equipment system and technology capability”, “flexibility and reliability”, “logistics cost”, “green materials and technologies”, and “on-time delivery” were ranked as the five most important criteria. From the CoCoSo analysis, Vietnam National Chemical Group (CHE-05) was found to be the best supplier. A sensitivity study and a comparison analysis of methods were also conducted to verify the robustness of the proposed model, and the priority rankings of the best suppliers were very similar. To the best of our knowledge, this is the first study that has proposed SF-AHP and CoCoSo to prioritize SSS evaluation criteria and determine the best alternatives. The suggested method and findings can be used to make well-informed decisions that help businesses to achieve supply chain sustainability, capture opportunities, and maintain competitiveness through reconfiguring resources. The method could be useful for case studies in other countries and for other sustainability problems. Full article
Show Figures

Figure 1

16 pages, 3017 KiB  
Article
Evaluation of Inhibitory Activities of Sophora flavescens and Angelica gigas Nakai Root Extracts against Monoamine Oxidases, Cholinesterases, and β-Secretase
by Jong Eun Park, Seul-Ki Mun, Sung-Tae Yee and Hoon Kim
Processes 2022, 10(5), 880; https://doi.org/10.3390/pr10050880 - 29 Apr 2022
Cited by 6 | Viewed by 2110
Abstract
In this study, Sophora flavescens (SF) from Yeongcheon (YSF) and Mt. Jiri (JiSF), and Angelica gias (AG) from Yeongcheon (YAG), Mt. Jiri (JiAG), and Jecheon (JeAG) were extracted using three concentrations of ethanol, 95% (95Et), 70% (70Et), and 50% (50Et), and hot water [...] Read more.
In this study, Sophora flavescens (SF) from Yeongcheon (YSF) and Mt. Jiri (JiSF), and Angelica gias (AG) from Yeongcheon (YAG), Mt. Jiri (JiAG), and Jecheon (JeAG) were extracted using three concentrations of ethanol, 95% (95Et), 70% (70Et), and 50% (50Et), and hot water (DW) to evaluate the inhibitions of monoamine oxidases (MAOs; MAO-A and B), cholinesterases (ChEs; AChE and BChE) and β-secretase (BACE1) for targeting depression and neurodegenerative diseases. There were no significant differences in constituent compounds depending on herbal origins, except that YSF-95Et and JiSF-95Et showed a distinct non-polar spot upper maackiain position, and JiAG and JeAG showed a higher amount of decursin than YAG. Ethanolic YAG and JeAG extracts showed the highest MAO-A inhibition, and YSF-95Et mostly inhibited MAO-B. JiSF-95Et showed the highest AChE inhibition and YSF-70Et, JiSF-95Et, and -70Et showed the highest BChE inhibition. Interestingly, ethanolic AG extracts showed extremely potent BACE1 inhibition, especially for JiAG-95Et and JeAG-50Et, whereas there have been no reports about BACE1 inhibition of decursin, the major compound, or AG extracts in other studies. All extracts were nontoxic to MDCK and SH-SY5Y with a low toxicity to HL-60. The results showed a different pattern of inhibitory activities of the extracts toward target enzymes depending on the origins, and multi-target abilities, especially for MAO-B and BChE by YSF-95Et, for AChE and BChE by JiSF-95Et, and for MAO-B and BACE1 by JiAG-95Et. It is suggested that those extracts are potential candidates for finding novel compounds with multi-target inhibitory activities, and herbal origin is an important factor to be considered in selection of the plants. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

28 pages, 29500 KiB  
Article
Designing Robust Biotechnological Processes Regarding Variabilities Using Multi-Objective Optimization Applied to a Biopharmaceutical Seed Train Design
by Tanja Hernández Rodríguez, Anton Sekulic, Markus Lange-Hegermann and Björn Frahm
Processes 2022, 10(5), 883; https://doi.org/10.3390/pr10050883 - 29 Apr 2022
Cited by 7 | Viewed by 2248
Abstract
Development and optimization of biopharmaceutical production processes with cell cultures is cost- and time-consuming and often performed rather empirically. Efficient optimization of multiple objectives such as process time, viable cell density, number of operating steps & cultivation scales, required medium, amount of product [...] Read more.
Development and optimization of biopharmaceutical production processes with cell cultures is cost- and time-consuming and often performed rather empirically. Efficient optimization of multiple objectives such as process time, viable cell density, number of operating steps & cultivation scales, required medium, amount of product as well as product quality depicts a promising approach. This contribution presents a workflow which couples uncertainty-based upstream simulation and Bayes optimization using Gaussian processes. Its application is demonstrated in a simulation case study for a relevant industrial task in process development, the design of a robust cell culture expansion process (seed train), meaning that despite uncertainties and variabilities concerning cell growth, low variations of viable cell density during the seed train are obtained. Compared to a non-optimized reference seed train, the optimized process showed much lower deviation rates regarding viable cell densities (<10% instead of 41.7%) using five or four shake flask scales and seed train duration could be reduced by 56 h from 576 h to 520 h. Overall, it is shown that applying Bayes optimization allows for optimization of a multi-objective optimization function with several optimizable input variables and under a considerable amount of constraints with a low computational effort. This approach provides the potential to be used in the form of a decision tool, e.g., for the choice of an optimal and robust seed train design or for further optimization tasks within process development. Full article
Show Figures

Figure 1

13 pages, 2957 KiB  
Article
A Generalized View of Longwall Emergency Stop Prevention (Ukraine)
by Sergey Vlasov, Yevhen Moldavanov, Roman Dychkovskyi, Edgar Cabana, Natalia Howaniec, Katarzyna Widera, Andrzej Bąk and Adam Smoliński
Processes 2022, 10(5), 878; https://doi.org/10.3390/pr10050878 - 29 Apr 2022
Cited by 9 | Viewed by 1525
Abstract
Based on both theoretical and practical experiences, the measures aimed at controlling emergency shutdowns of stopes have been highlighted. These stopes are connected with the emergency rigid settlements of powered complexes. In terms of the Western Donbas mines, there are certain risks of [...] Read more.
Based on both theoretical and practical experiences, the measures aimed at controlling emergency shutdowns of stopes have been highlighted. These stopes are connected with the emergency rigid settlements of powered complexes. In terms of the Western Donbas mines, there are certain risks of a shutdown of stopping operations within the zone of primary roof caving. Thus, the causes of emergency rigid settlements of the support may include the following: layers of the main roof rocks are hanging and not timely delaminated; sudden changes in lithology; hydraulic overloading of the main roof; structural flaws of support under certain conditions of its use, etc. In this paper, the theoretical method of scientific cognition was applied, which, with its help, makes it possible to switch from single low-efficiency measures to a set of actions aimed at preventing any uncontrolled situation. Obtaining certain generalized knowledge means obtaining a much deeper representation of reality, penetrating into its essence. The study also involves statistical analysis, being the basis for outlining a zone of primary caving where a high degree of risk is observed. Certainly, the generalization of these measures does not solve the problem completely. Consequently, there will be further attempts to search for and achieve principal new solutions in the future. Full article
Show Figures

Figure 1

17 pages, 4321 KiB  
Article
Coating Process of Honeycomb Cordierite Support with Ni/Boehmite Gels
by Vincent Claude, Julien G. Mahy, Timothée Lohay, Jérémy Geens and Stéphanie D. Lambert
Processes 2022, 10(5), 875; https://doi.org/10.3390/pr10050875 - 28 Apr 2022
Cited by 6 | Viewed by 2448
Abstract
This study presents the development of a method for the washcoating of Ni/boehmite gels, prepared by the sol–gel process, onto the surface of a commercial ceramic monolith. Indeed, a cordierite monolith in a honeycomb shape was used as the substrate for the Ni/Al [...] Read more.
This study presents the development of a method for the washcoating of Ni/boehmite gels, prepared by the sol–gel process, onto the surface of a commercial ceramic monolith. Indeed, a cordierite monolith in a honeycomb shape was used as the substrate for the Ni/Al2O3 deposition. An experimental assembly was made in order to apply the coating on the cordierite surface. Different suspensions were used with various viscosities, and multiple coating parameters were tested as the withdrawal speed, or the number of impregnations. It was observed that the simple deposition of the Ni/boehmite gel led to the formation of coating. Different morphologies were observed, and defects were highlighted as cracks, coating-free areas or aggregates. Among the various parameters studied, the pH of the sol appeared to play a role even more important than the viscosity. Indeed, the sol acidified with nitric acid showed a coating which was almost free of cracks or of large aggregates. Moreover, the use of a slurry mix of calcined alumina particles and colloidal boehmite appeared also as an interesting path. The beneficial influence of the slurry was attributed to a better resistance of the coating against the stresses induced during drying, and a deviation of the cracks in the gels by slurry grains. Full article
(This article belongs to the Special Issue Advances in Sol-Gel Processes)
Show Figures

Figure 1

12 pages, 513 KiB  
Article
Assessing Functionality of Alternative Sweeteners in Rolled “Sugar” Cookies
by Melanie L. Heermann, Janae Brown, Kelly J. K. Getty and Umut Yucel
Processes 2022, 10(5), 868; https://doi.org/10.3390/pr10050868 - 28 Apr 2022
Cited by 2 | Viewed by 3707
Abstract
Sucrose contributes to the key physical and sensory characteristics of cookies. Due to the negative health effects associated with excess sucrose consumption, the replacement of sucrose in baking applications is of interest. In this study, nine variations of rolled cookies were prepared ( [...] Read more.
Sucrose contributes to the key physical and sensory characteristics of cookies. Due to the negative health effects associated with excess sucrose consumption, the replacement of sucrose in baking applications is of interest. In this study, nine variations of rolled cookies were prepared (n = 3) using a sucrose control (C), Splenda for baking (SB), Equal for baking (EB), Truvia (TR), Sweet’N Low (SNL), and 1:1 (wt%) mixtures of sweeteners and sucrose (S). The cookies were characterized by a width-to-thickness (W/T) ratio, moisture loss, color, hardness, and fracturability. The W/T ratios of TR (5.7) and TR + sucrose (6.6) were similar, the closest to C (7.7), and bigger than (p < 0.05) all other treatments. Color was not affected (p > 0.05) by the sugar type or concentration. C showed the greatest hardness (5268 N), and SNL had the greatest fracturability (8667 N). Overall, regarding physiochemical characteristics, TR + sucrose (1:1 replacement) and SB (100% replacement) were the closest to the control. Full article
(This article belongs to the Special Issue Processing and Properties Analysis of Grain Foods)
Show Figures

Figure 1

19 pages, 4494 KiB  
Article
Development and Application of SONIC Divertor Simulation Code to Power Exhaust Design of Japanese DEMO Divertor
by Nobuyuki Asakura, Kazuo Hoshino, Yuki Homma, Yoshiteru Sakamoto and Joint Special Design Team for Fusion DEMO
Processes 2022, 10(5), 872; https://doi.org/10.3390/pr10050872 - 28 Apr 2022
Cited by 3 | Viewed by 2019
Abstract
An integrated divertor simulation code, SONIC, has been developed in order to predict a self-consistent transport solution of the plasma, neutral and impurities in the scrape-off layer (SOL) and divertor. SONIC code has contributed to determining the divertor design and power handling scenarios [...] Read more.
An integrated divertor simulation code, SONIC, has been developed in order to predict a self-consistent transport solution of the plasma, neutral and impurities in the scrape-off layer (SOL) and divertor. SONIC code has contributed to determining the divertor design and power handling scenarios for the Japanese (JA) fusion demonstration (DEMO) reactor. Radiative cooling scenario of Ar impurity seeding and the divertor performance have been demonstrated to evaluate the power exhaust scenarios with Psep = 230–290 MW. The simulation identified the decay length of the total parallel heat flux profile as being broader than the electron one, because of the ion convective transport from the outer divertor to the upstream SOL, produced by the plasma flow reversal. The flow reversal also reduced the impurity retention in the outer divertor, which may produce the partial detachment. Divertor operation margin of key power exhaust parameters to satisfy the peak qtarget ≤ 10 MWm−2 was determined in the low nesep of 2 − 3 × 1019 m−3 under severe conditions such as reducing radiation loss fraction, i.e., f*raddiv = (Pradsol + Praddiv)/Psep and diffusion coefficients (χ and D). The divertor geometry and reference parameters (f*raddiv ~ 0.8, χ = 1 m2s−1, D = 0.3 m2s−1) were consistent with the low nesep operation of the JA DEMO concepts. For either severe assumption of f*raddiv ~ 0.7 or χ and D to their half values, higher nesep operation was required. In addition, recent investigations of physics models (temperature-gradient force on impurity, photon transport, neutral–neutral collision) under the DEMO relevant SOL and divertor condition are presented. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) Simulations for Fusion Reactors)
Show Figures

Figure 1

14 pages, 3628 KiB  
Article
Solutions of Feature and Hyperparameter Model Selection in the Intelligent Manufacturing
by Chung-Ying Wang, Chien-Yao Huang and Yen-Han Chiang
Processes 2022, 10(5), 862; https://doi.org/10.3390/pr10050862 - 27 Apr 2022
Cited by 5 | Viewed by 2061
Abstract
In the era of Industry 4.0, numerous AI technologies have been widely applied. However, implementation of the AI technology requires observation, analysis, and pre-processing of the obtained data, which takes up 60–90% of total time after data collection. Next, sensors and features are [...] Read more.
In the era of Industry 4.0, numerous AI technologies have been widely applied. However, implementation of the AI technology requires observation, analysis, and pre-processing of the obtained data, which takes up 60–90% of total time after data collection. Next, sensors and features are selected. Finally, the AI algorithms are used for clustering or classification. Despite the completion of data pre-processing, the subsequent feature selection and hyperparameter tuning in the AI model affect the sensitivity, accuracy, and robustness of the system. In this study, two novel approaches of sensor and feature selecting system, and hyperparameter tuning mechanisms are proposed. In the sensor and feature selecting system, the Shapley Additive ExPlanations model is used to calculate the contribution of individual features or sensors and to make the black-box AI model transparent, whereas, in the hyperparameter tuning mechanism, Hyperopt is used for tuning to improve model performance. Implementation of these two new systems is expected to reduce the problems in the processes of selection of the most sensitive features in the pre-processing stage, and tuning of hyperparameters, which are the most frequently occurring problems. Meanwhile, these methods are also applicable to the field of tool wear monitoring systems in intelligent manufacturing. Full article
(This article belongs to the Special Issue New Frontiers in Magnetic Polishing and Electrochemical Technology)
Show Figures

Figure 1

Back to TopTop