Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = remanent fields

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11913 KiB  
Article
Research on the Remanence Measurement Method of Transformers Based on the Degaussing Hysteresis Loop
by Dingyuan Li, Jing Zhou, Zhanlong Zhang, Yu Yang, Zijian Dong, Wenhao He, Xichen Pei, Jiatai Gao, Siyang Chen and Zhicheng Pan
Appl. Sci. 2025, 15(10), 5375; https://doi.org/10.3390/app15105375 - 12 May 2025
Viewed by 93
Abstract
The residual magnetism of the iron core of power transformers can cause an excitation inrush current, posing a threat to the safe and stable operation of the power grid. This paper proposes a transformer remanence measurement method based on a demagnetization hysteresis loop [...] Read more.
The residual magnetism of the iron core of power transformers can cause an excitation inrush current, posing a threat to the safe and stable operation of the power grid. This paper proposes a transformer remanence measurement method based on a demagnetization hysteresis loop to address the problems of large errors, complex operation, and poor universality in existing remanence measurement methods. This method is designed for off-grid transformers to avoid potential interference to the power grid caused by current pulses during the measurement process. This method constructs an RLC oscillation circuit that utilizes capacitor energy storage and iron core magnetic field energy conversion, combined with the dynamic characteristics of hysteresis loops, to achieve accurate measurement of residual magnetism and synchronous demagnetization. The effectiveness of this method has been verified through residual magnetism measurement experiments on ring transformers and large converter transformers, and it can be applied in specific engineering practice operations. Theoretical analysis shows that the charging range of energy storage capacitors is affected by the hysteresis characteristics of the iron core and the saturation magnetic flux, and the residual magnetization value can be directly calculated based on the difference in the intersection point of the longitudinal axis of the demagnetization hysteresis loop. Simulation and experimental results show that the measurement error of the proposed method is less than 5%—significantly better than traditional methods. This method does not require complex control strategies, has high precision and efficiency, and can provide reliable technical support for residual magnetism detection and suppression of off-grid power transformers. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 5600 KiB  
Article
Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites
by Lilian Calderón-Garcidueñas, Fredy Rubén Cejudo-Ruiz, Elijah W. Stommel, Angélica González-Maciel, Rafael Reynoso-Robles, Héctor G. Silva-Pereyra, Beatriz E. Pérez-Guille, Rosa Eugenia Soriano-Rosales and Ricardo Torres-Jardón
Toxics 2025, 13(4), 284; https://doi.org/10.3390/toxics13040284 - 8 Apr 2025
Viewed by 612
Abstract
Air pollution plays a key role in sleep disorders and neurodegeneration. Alzheimer’s disease (AD), Parkinson’s disease (PD), and/or transactive response DNA-binding protein TDP-43 neuropathology have been documented in children and young adult forensic autopsies in the metropolitan area of Mexico City (MMC), along [...] Read more.
Air pollution plays a key role in sleep disorders and neurodegeneration. Alzheimer’s disease (AD), Parkinson’s disease (PD), and/or transactive response DNA-binding protein TDP-43 neuropathology have been documented in children and young adult forensic autopsies in the metropolitan area of Mexico City (MMC), along with sleep disorders, cognitive deficits, and MRI brain atrophy in seemingly healthy young populations. Ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs) reach urbanites’ brains through nasal/olfactory, lung, gastrointestinal tract, and placental barriers. We documented Fe UFPM/NPs in neurovascular units, as well as lateral hypothalamic nucleus orexinergic neurons, thalamus, medullary, pontine, and mesencephalic reticular formation, and in pinealocytes. We quantified ferromagnetic materials in sleep and arousal brain hubs and examined their motion behavior to low magnetic fields in MMC brain autopsy samples from nine children and 25 adults with AD, PD, and TDP-43 neuropathology. Saturated isothermal remanent magnetization curves at 50–300 mT were associated with UFPM/NP accumulation in sleep/awake hubs and their motion associated with 30–50 µT (DC magnetic fields) exposure. Brain samples exposed to anthropogenic PM pollution were found to be sensitive to low magnetic fields, with motion behaviors that were potentially linked to the early development and progression of fatal neurodegenerative diseases and sleep disorders. Single-domain magnetic UFPM/NPs in the orexin system, as well as arousal, sleep, and autonomic regions, are key to neurodegeneration, behavioral and cognitive impairment, and sleep disorders. We need to identify children at higher risk and monitor environmental UFPM and NP emissions and exposures to magnetic fields. Ubiquitous ferrimagnetic particles and low magnetic field exposures are a threat to global brain health. Full article
(This article belongs to the Special Issue The Influence of Urban Air Pollution on Neurobehavioral Disorders)
Show Figures

Figure 1

27 pages, 21199 KiB  
Article
Research on the Performance Laws of the Piezoelectric Beam and Magnetic Coupling Module of the Magnetic-Coupled Double-Wing Negative Stiffness Energy Harvester
by Jie Yang and Yingchun Chen
Materials 2025, 18(7), 1503; https://doi.org/10.3390/ma18071503 - 27 Mar 2025
Viewed by 265
Abstract
With the rapid development of urban rail transit, the floating slab vibration isolation system has become widely used in the field due to its effective vibration reduction and isolation capabilities. Traditional floating slab vibration-isolation systems mainly focus on blocking vibration transmission, neglecting energy [...] Read more.
With the rapid development of urban rail transit, the floating slab vibration isolation system has become widely used in the field due to its effective vibration reduction and isolation capabilities. Traditional floating slab vibration-isolation systems mainly focus on blocking vibration transmission, neglecting energy harvesting. This paper proposes a magnetic-coupled double-wing negative stiffness energy harvester for floating slabs. A single-wing piezoelectric beam model and a finite element model of the magnetic-coupled module are established. The modal and output characteristics of the single-wing piezoelectric beam are analyzed. Furthermore, the force characteristics of the magnetically coupled negative stiffness module are analyzed. The results show that the contribution of its width to the modal frequency gradually decreases with an increase in the length of the single-wing piezoelectric beam. The thickness significantly influences the characteristic frequency, and the load is exponentially related to the output power. At the optimal load and characteristic frequency of the single-wing piezoelectric beam, the output characteristics decrease with an increase in the width. The peak value of the magnetic-coupled negative stiffness gradually decreases with an increase in the magnetic gap. The increase in remanent magnetic strength indicates that the initial state of the magnetic ring is more easily affected by external conditions. The change in axial magnetic force becomes significant with increased displacement. This research enriches the theoretical systems of piezoelectric energy harvesting technology and magnetic-coupled negative stiffness mechanism while providing important theoretical support for subsequent experimental research, optimal design, and practical applications. Full article
(This article belongs to the Special Issue Advanced Design and Synthesis in Piezoelectric Smart Materials)
Show Figures

Figure 1

21 pages, 7184 KiB  
Article
Susceptibility and Remanent Magnetization Estimates from Orientation Tools in Borehole Imaging Logs
by Julio Cesar S. O. Lyrio, Ana Patrícia C. C. Laier, Jorge Campos Junior, Ana Natalia G. Rodrigues and Luciano dos Santos Martins
Appl. Sci. 2025, 15(5), 2873; https://doi.org/10.3390/app15052873 - 6 Mar 2025
Viewed by 663
Abstract
Orientation tools in borehole imaging logs acquire magnetic information that is currently used for spatial and geographical orientation of the images. We propose to use this magnetic field information to estimate both magnetic susceptibility and remanent magnetization of rocks inside wells. Measurements of [...] Read more.
Orientation tools in borehole imaging logs acquire magnetic information that is currently used for spatial and geographical orientation of the images. We propose to use this magnetic field information to estimate both magnetic susceptibility and remanent magnetization of rocks inside wells. Measurements of these magnetic parameters are not often available in hydrocarbon exploration to support forward modeling of magnetic data, an interpretation tool that has played important role in the exploration risk reduction in the Pre-Salt prospects of Campos Basin, Brazil. The acquired magnetic data requires corrections for tool rotation and diurnal variation of the Earth’s magnetic field before calculation. Then, using a set of simple equations and reasonable assumptions we were able to estimate the magnetic susceptibility of carbonates and basalts, as well as the remanent magnetization of the basalts, from a Pre-Salt well in Campos Basin. When compared to susceptibility values measured in laboratory for the same rock interval, our results show a significant match. This promising result shows the importance of our methodology in providing reliable information that can minimize uncertainties in forward modeling of magnetic data, which contributes to reduction of hydrocarbon exploration risks. Given that direct susceptibility and remanence measurements require oriented samples, a complex and expensive operation in wells, our results offer this rock information without any extra costs since imaging logs are commonly acquired in exploration wells. Besides its use in hydrocarbon exploration, our methodology can be applied to mineral exploration where magnetic susceptibility is an important property for rock identification. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Figure 1

14 pages, 6296 KiB  
Article
Enhanced Coercivity and Tb Distribution Optimization of Sintered Nd-Fe-B Magnets by TbF3 Grain Boundary Diffusion Facilitated by Ga
by Ling Wang, Wenjiao Li, Xiaopeng Wang, Zejun Deng and Shujuan Gao
Molecules 2025, 30(3), 594; https://doi.org/10.3390/molecules30030594 - 28 Jan 2025
Viewed by 855
Abstract
The grain boundary diffusion process employing a mixed diffusion source, comprising heavy rare-earth elements and low-melting metals, significantly enhances the coercivity (Hcj) of sintered Nd-Fe-B magnets. In the present study, Tb and Ga were deposited onto the surface of Nd-Fe-B magnets [...] Read more.
The grain boundary diffusion process employing a mixed diffusion source, comprising heavy rare-earth elements and low-melting metals, significantly enhances the coercivity (Hcj) of sintered Nd-Fe-B magnets. In the present study, Tb and Ga were deposited onto the surface of Nd-Fe-B magnets to serve as a diffusion source for improving hard magnetic properties. The effects of varying deposition sequences of Tb and Ga on the magnetic properties and microstructure of the magnets were analyzed. The findings demonstrate that TbF3 grain boundary diffusion facilitated by Ga effectively increases the efficiency of Tb substitution, leading to enhanced coercivity. When Tb and Ga are deposited simultaneously, coercivity shows a notable improvement of 53.15% compared to the untreated magnet, with no reduction in remanence. Additionally, thermal stability is enhanced, resulting in superior overall magnetic properties. Microstructural analysis reveals that Ga promotes the diffusion of Tb into the magnet. In the magnet where Tb and Ga are co-deposited, the formation of a thinner and more uniform (Nd,Tb)2Fe14B shell–core structure, along with the greater infiltration depth of Tb, leads to a broader distribution of core–shell structures within the magnet. This effectively increases the anisotropy fields (HA) of the main phase grains, preventing the nucleation of antiferromagnetic domains at the edges of main-phase grains, thereby enhancing coercivity. Furthermore, the corrosion resistance of the magnet subjected to mixed diffusion is improved. This study provides a foundation for producing highly efficient magnets with a lower content of heavy rare-earth elements. The simplicity and flexibility of the process make it highly suitable for industrial applications. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry—2nd Edition)
Show Figures

Figure 1

10 pages, 2464 KiB  
Article
The Multiferroic, Magnetic Exchange Bias Effect, and Photodetection Multifunction Characteristics in MnSe/Ga0.6Fe1.4O3 Heterostructure
by Ye Zhao, Ruilong Yang, Ke Yang, Jiarui Dou, Jinzhong Guo, Xiaoting Yang, Guowei Zhou and Xiaohong Xu
Materials 2025, 18(3), 586; https://doi.org/10.3390/ma18030586 - 27 Jan 2025
Viewed by 710
Abstract
Artificial heterostructures are typically created by layering distinct materials, thereby giving rise to unique characteristics different from their individual components. Herein, two-dimensional α-MnSe nanosheets with a non-layered structure were fabricated on Ga0.6Fe1.4O3 (GFO) films. The superior crystalline properties [...] Read more.
Artificial heterostructures are typically created by layering distinct materials, thereby giving rise to unique characteristics different from their individual components. Herein, two-dimensional α-MnSe nanosheets with a non-layered structure were fabricated on Ga0.6Fe1.4O3 (GFO) films. The superior crystalline properties of MnSe/GFO heterostructures were confirmed through structural and morphological analyses. The remanent polarization is around 1.5 μC/cm2 and the leakage current density can reach 2 × 10−3 A/cm2 under 4 V. In addition, the piezo-response force microscopy amplitude and phase images further supported the ferroelectric property. The significant improvement of coercive field and saturated magnetization, along with the antiparallel signals of Mn and Fe ions observed through synchrotron X-ray analyses, suggest the presence of magnetic interaction within the MnSe/GFO heterostructure. Finally, the excellent photodetector with a photo detectivity of 6.3 × 108 Jones and a photoresponsivity of 2.8 × 10−3 A·W−1 was obtained under 532 nm in the MnSe/GFO heterostructure. The characteristics of this heterostructure, which include multiferroic, magnetic exchange bias effect, and photodetection capabilities, are highly beneficial for multifunctional devices. Full article
Show Figures

Graphical abstract

11 pages, 2416 KiB  
Article
The Effect of Annealing in a Magnetic Field on the Microstructures and Magnetic Properties of (Nd0.8RE0.2)2.2Fe12Co2B (RE = La, Ce) Alloys
by Xiaohua Tan, Xuanbo Shi, Shiqi Zhang and Hui Xu
Metals 2025, 15(1), 5; https://doi.org/10.3390/met15010005 - 26 Dec 2024
Viewed by 669
Abstract
The development of high-performance and cost-effective Nd-Fe-B permanent magnets is crucial to meet the ever-growing requirements of renewable and clean energy applications. Here, we use low-cost and highly abundant La and Ce to partially substitute Nd and investigate the effect of annealing treatment [...] Read more.
The development of high-performance and cost-effective Nd-Fe-B permanent magnets is crucial to meet the ever-growing requirements of renewable and clean energy applications. Here, we use low-cost and highly abundant La and Ce to partially substitute Nd and investigate the effect of annealing treatment with a 1 tesla (T) magnetic field on the microstructures and magnetic properties of (Nd0.8RE0.2)2.2Fe12Co2B (RE = La, Ce) ribbons. The remanence (Br) and maximum energy product ((BH)max) of studied alloys can be improved by magnetic field annealing. The respective Br and (BH)max of annealed (Nd0.8La0.2)2.2Fe12Co2B alloy are increased to 0.86 T and 124 kJ/m3. In comparison to melt-spun (Nd0.8Ce0.2)2.2Fe12Co2B alloy, the Br and (BH)max of the magnetic field-annealed alloy are improved by 5% and 8%. The underlying mechanism of improved magnetic properties of La- and Ce-substituted alloys is different. The interaction magnetic domain size in (Nd0.8La0.2)2.2Fe12Co2B alloy can be increased by magnetic field annealing, leading to the enhancement of exchange coupling interaction, which results to the improvement in Br and (BH)max. In the (Nd0.8Ce0.2)2.2Fe12Co2B alloy, the concentration of (Fe + Co) of ferromagnetic intergranular phase is increased after magnetic field annealing, resulting in the increase in Br and (BH)max. Full article
Show Figures

Graphical abstract

14 pages, 8360 KiB  
Article
Investigation of the Impact of SmFeN Doping on the Anisotropic NdFeB/SmFeN Composite Magnets
by Wei Cai, Xinqi Zhang, Zhiping Shi, Haibo Chen, Qiaomin Zhu, Kun Jiang, Liang Qiao, Yao Ying, Wangchang Li, Jing Yu, Juan Li, Jingwu Zheng and Shenglei Che
J. Compos. Sci. 2024, 8(12), 514; https://doi.org/10.3390/jcs8120514 - 6 Dec 2024
Viewed by 946
Abstract
By incorporating various types of permanent magnetic powders, composite magnets with cost-effectiveness and a wide range of magnetic properties can be achieved. In this study, the anisotropic composite magnets were fabricated using the hot press forming method, which involved blending neodymium iron boron [...] Read more.
By incorporating various types of permanent magnetic powders, composite magnets with cost-effectiveness and a wide range of magnetic properties can be achieved. In this study, the anisotropic composite magnets were fabricated using the hot press forming method, which involved blending neodymium iron boron (NdFeB) powder and samarium iron nitrogen (SmFeN) powder. The experiment demonstrated that the magnet density reaches its maximum point when the doping level of SmFeN reaches 20 wt.%, aligning remarkably well with the corresponding theoretical value of 19.22 wt.% achieved through a cubic stacking arrangement. In the absence of an applied magnetic field or under a sufficiently high oriented magnetic field (3 T), the remanence variation pattern in composite magnets doped with different amounts of SmFeN aligns consistently with the density pattern, yielding a maximum value of 20%. However, in the actual solidification process, the orientation field is insufficient (e.g., 1.5 T), necessitating a doping amount that exceeds the value corresponding to peak density by 28% to achieve optimal remanence. This observation suggests that the incorporation of a higher proportion of small-sized and relatively low coercivity SmFeN magnetic powder can effectively facilitate the rotational alignment of neighboring large-sized NdFeB magnetic powder under weak magnetic fields, thereby inducing a synergistic effect. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

10 pages, 830 KiB  
Article
Coexistence of Superconductivity and Magnetic Ordering in the In–Ag Alloy Under Nanoconfinement
by Marina V. Likholetova, Elena V. Charnaya, Evgenii V. Shevchenko, Yurii A. Kumzerov and Aleksandr V. Fokin
Nanomaterials 2024, 14(22), 1792; https://doi.org/10.3390/nano14221792 - 7 Nov 2024
Viewed by 994
Abstract
The impact of the interface phenomena on the properties of nanostructured materials is the focus of modern physics. We studied the magnetic properties of the nanostructured In–Ag alloy confined within a porous glass. The alloy composition was close to the eutectic point in [...] Read more.
The impact of the interface phenomena on the properties of nanostructured materials is the focus of modern physics. We studied the magnetic properties of the nanostructured In–Ag alloy confined within a porous glass. The alloy composition was close to the eutectic point in the indium-rich range of the phase diagram. Temperature dependences of DC magnetization evidenced two superconducting transitions at 4.05 and 3.38 K. The magnetization isotherms demonstrated the superposition of two hysteresis loops with low and high critical fields below the second transition, a single hysteresis between the transitions and ferromagnetism with weak remanence in the normal state of the alloy. The shape of the loop seen below the second transition, which closes at a low magnetic field, corresponded to the intermediate state of the type-I superconductor. It was ascribed to strongly linked indium segregates. The loop observed below the first transition is referred to as type-II superconductivity. The secondary and tertiary magnetization branches measured at decreasing and increasing fields were shifted relative to each other, revealing the proximity of superconducting and ferromagnetic phases at the nanometer scale. This phenomenon was observed for the first time in the alloy, whose components were not magnetic in bulk. The sign of the shift shows the dominant role of the stray fields of ferromagnetic regions. Ferromagnetism was suggested to emerge at the interface between the In and AgIn2 segregates. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

25 pages, 15620 KiB  
Article
Research on the Mechanism of Thermal Power Enhancement in an Interior Permanent Magnet Eddy Current Heater Driven by Wind
by Honglei Lu, Ce Zhou, Wenpeng Hong and Haoshu Ding
Processes 2024, 12(11), 2390; https://doi.org/10.3390/pr12112390 - 30 Oct 2024
Cited by 1 | Viewed by 658
Abstract
This article uses numerical simulation methods to study the comprehensive influences of the stator structure and materials on the thermal power of an interior permanent magnet eddy current heater (IPMECH). By analyzing the air-gap magnetic flux density (MFD), stator MFD, thermal power, and [...] Read more.
This article uses numerical simulation methods to study the comprehensive influences of the stator structure and materials on the thermal power of an interior permanent magnet eddy current heater (IPMECH). By analyzing the air-gap magnetic flux density (MFD), stator MFD, thermal power, and torque at different rotational speeds, the mechanism of thermal power enhancement has been revealed in depth. The results indicate that the armature magnetic field (MF) generated by the eddy current produces a magnetization effect on the side of its rotation direction, but the MF in the stator will be weakened in general, and this effect becomes more significant with the increase in the rotational speed. The stator material of the IPMECH has higher permeability, which has higher thermal power and torque, and a lower proportion of high-order harmonics, which is beneficial for reducing the radial vibration of the IPMECH. A permanent magnet with high remanence can increase the thermal power and torque of the IPMECH. Reducing the length of the air gap is beneficial for improving the thermal power, but it also increases the harmonic MFD. The rotational speed is 200 rpm, the air gap is 0.1 mm and 2 mm, and the thermal power is 1.12 kW and 0.35 kW, respectively. The fundamental amplitudes of the 0.1 mm and 2 mm air-gap lengths are 0.94 T and 0.64 T, respectively, and the 3rd harmonic B*i values are 0.24 and 0.18, respectively. At rotational speeds of 200 rpm, 800 rpm, and 1600 rpm, the δPmax values are 17 mm, 11 mm, and 8 mm, respectively. When designing a heater, the higher the rotational speed, the smaller the stator wall thickness should be. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 7358 KiB  
Article
Investigation of Structural, Elastic and Magnetic Properties of CoCr2−xZrxO4 Nanoparticles
by Mai M. E. Barakat and Doaa El-Said Bakeer
Materials 2024, 17(21), 5149; https://doi.org/10.3390/ma17215149 - 22 Oct 2024
Viewed by 998
Abstract
This study investigates the impact of zirconium substitution on the structural, elastic and magnetic properties of CoCr2O4 nanoparticles. A series of CoCr2−xZrxO4 nanoparticles, x = 0.00, 0.05, 0.10, 0.15 and 0.20, are synthesized via the [...] Read more.
This study investigates the impact of zirconium substitution on the structural, elastic and magnetic properties of CoCr2O4 nanoparticles. A series of CoCr2−xZrxO4 nanoparticles, x = 0.00, 0.05, 0.10, 0.15 and 0.20, are synthesized via the co-precipitation method. X-ray diffraction (XRD) patterns affirm the formation of single-phase cubic structure with the space group Fd3m. Special attention is given to accurately calculating the average crystallite size (D) and lattice parameter (a) using Williamson–Hall (W–H) analysis and the Nelson–Riley (N–R) extrapolation function, respectively. The increase in Zr4+ content leads to a reduction in crystallite size and an increase in the lattice parameter. Elastic properties are estimated from force constants and the lattice constant, determined from FTIR and XRD, respectively. The observed changes in the elastic constants are attributed to the strength of interatomic bonding. The stiffness constants decrease, while Poisson’s ratio increases with increasing Zr4+ content, reflecting the increase in the ductility of the prepared samples. As the Zr4+ content increases, the stiffness constants decrease, and Poisson’s ratio increases, reflecting enhanced ductility of the samples. Furthermore, as Zr4+ content rises, Young’s modulus, the rigidity modulus and Debye temperature decrease. The magnetic hysteresis loop measurements are carried out at room temperature using a vibrating sample magnetometer (VSM) over a field range of 25 kg. Unsubstituted CoCr2O4 exhibits ferrimagnetic behavior. As Zr4+ content increases, saturation magnetization (Ms) and magnetic moment decrease, while remanent magnetization (Mr) and coercivity (Hc) initially decrease up to x = 0.10, then increase with further increases in x. The novel key of this study is how Zr4+ substitution in CoCr2O4 nanoparticles can effectively modify their elastic moduli and magnetic properties, making them suitable for various applications such as flexible electronics, protective coatings, energy storage components and biomedical implants. Full article
Show Figures

Figure 1

16 pages, 5730 KiB  
Article
Modeling and Hybrid Inversion of Mineral Deposits Using the Dipping Dike Model with Finite Depth Extent
by Saulo Pomponet Oliveira, Juarez dos Santos Azevedo, Joelson da Conceição Batista and Diego Menezes Novais
Minerals 2024, 14(10), 1054; https://doi.org/10.3390/min14101054 - 21 Oct 2024
Cited by 1 | Viewed by 1017
Abstract
The dipping dike model has shown to be a useful approximation for mineral deposits. To make this model more realistic, we include the thickness, which yields the depth to the bottom, as an additional parameter. The magnetic anomaly is obtained by combining the [...] Read more.
The dipping dike model has shown to be a useful approximation for mineral deposits. To make this model more realistic, we include the thickness, which yields the depth to the bottom, as an additional parameter. The magnetic anomaly is obtained by combining the anomalies of two infinite dikes, so that the resulting expression is simpler than the classical prismatic models with polygonal cross section. We employ a Metropolis-Hasting (MH) algorithm coupled with the Levenberg-Marquardt (LM) method to invert magnetic profiles assuming a model of multiple dike-like sources. We use a few iterations of the LM method to improve the candidate solutions at the end of each random walk generated by MH. The following parameters are obtained: depth to the top, thickness, half-width, horizontal location of the top center, geological dip, in addition to two effective parameters that depend on the intensity of magnetization and the directions of the induced and remanent fields. For synthetic anomalies, both noise-free and noisy magnetic data are considered, with examples presented for each scenario. These examples highlight the discrepancy between models with finite and infinite sources. They also illustrate the higher accuracy of the hybrid MH-LM method over the pure MH approach. Moreover, two field examples related to mineral exploration have been considered: the Pima copper mine, United States, where the relative differences between the parameters obtained by our algorithm and those known from drilling are not higher than 10%, and a magnetic profile over iron ore deposits located in Laje, northeast Brazil, where the inverted parameters were useful for detailing previous studies. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

11 pages, 6985 KiB  
Article
Effects of Substrates on the Electrical Performance of PbZr0.52Ti0.48O3 Films
by Zhi Wu, Yifei Liu, Jing Zhou, Pengcheng Jiang, Xin Xiong, Huidong Tang, Yuxi Long, Jingdan Yan and Yun Wang
Coatings 2024, 14(8), 940; https://doi.org/10.3390/coatings14080940 - 26 Jul 2024
Viewed by 1157
Abstract
Flexible PbZr0.52Ti0.48O3 (PZT) films have a wide application prospect in wearable devices. In this work, PZT films were fabricated on LaNiO3–based Si substrates and mica substrates, respectively. The effects of Si substrates and mica substrates on [...] Read more.
Flexible PbZr0.52Ti0.48O3 (PZT) films have a wide application prospect in wearable devices. In this work, PZT films were fabricated on LaNiO3–based Si substrates and mica substrates, respectively. The effects of Si substrates and mica substrates on the dielectric and ferroelectric properties of PZT films were studied. The stability of PZT films on different substrates was discussed by controlling temperature and frequency. The optimal annealing temperature for preparing PZT films on LaNiO3–based Si substrates and mica substrates is 750 °C. The dielectric and ferroelectric properties of PZT films vary with the substrates. The diffraction peak of PZT films deposited on mica substrates shifted to the left compared with that deposited on Si substrates, due to difference of the expansion coefficients. The as–prepared PZT films exhibit a good ferroelectric property at a frequency in the range of 100 Hz~1000 Hz. Moreover, PZT films deposited on mica substrates have larger remanent polarization values and coercive fields than PZT films deposited on Si substrates. With the elevation in temperature, the dielectric constant of PZT films gradually enhance. And as–prepared PZT films at an annealing temperature of 750 °C have a better dielectric temperature stability. PZT films grown on Si substrates exhibit more excellent dielectric temperature stability than that of PZT films grown on mica substrates. Full article
(This article belongs to the Special Issue High-Performance Dielectric Ceramic for Energy Storage Capacitors)
Show Figures

Figure 1

15 pages, 10448 KiB  
Article
Identifying Optimal Processing Variables and Investigating Mechanisms of Grain Alignment in Hot-Deformed NdFeB Magnets through Design of Experiments
by Jongbin Ahn, Jung-Goo Lee and Wooyoung Lee
Materials 2024, 17(13), 3371; https://doi.org/10.3390/ma17133371 - 8 Jul 2024
Viewed by 1164
Abstract
This study introduces a novel approach for investigating hot-deformed NdFeB magnets by combining the minimal stress deformation process (MSDP) with the design of experiment (DoE) methodology. This study focused on enhancing the crystallographic alignment, particularly the c-axis alignment of the Nd2Fe [...] Read more.
This study introduces a novel approach for investigating hot-deformed NdFeB magnets by combining the minimal stress deformation process (MSDP) with the design of experiment (DoE) methodology. This study focused on enhancing the crystallographic alignment, particularly the c-axis alignment of the Nd2Fe14B grains, to optimize the magnetic properties. By utilizing the Box-Behnken design matrix and response surface regression, critical processes and variables were identified, determining that a hot-pressing temperature of 700 °C is crucial for achieving optimal grain alignment. Changing the strain rate to 0.019 mm/s under a stress of 110 MPa led to significant enhancements in the alignment, yielding magnets with a remanence of approximately 13.4 kG and a coercivity of 21 kOe. These findings highlight the effectiveness of combining the MSDP and DoE for predicting and achieving improved magnetic properties. Despite the challenges associated with understanding the complexity of crystal alignment mechanisms, this integrated approach successfully improved magnetic characteristics. The methodology represents a significant advancement in the fabrication of high-performance hot-deformed NdFeB magnets, marking a notable contribution to the field. Full article
Show Figures

Figure 1

8 pages, 2147 KiB  
Communication
Energy Storage Performance of (Na0.5Bi0.5)TiO3 Relaxor Ferroelectric Film
by Xuxia Liu, Yao Yao, Xiaofei Wang, Lei Zhao and Xingyuan San
Coatings 2024, 14(7), 801; https://doi.org/10.3390/coatings14070801 - 27 Jun 2024
Cited by 4 | Viewed by 1060
Abstract
The (Na0.5Bi0.5)TiO3 relaxor ferroelectric materials have great potential in high energy storage capacitors due to their small hysteresis, low remanent polarization and high breakdown electric field. In this work, (Na0.5Bi0.5)TiO3 thin films with [...] Read more.
The (Na0.5Bi0.5)TiO3 relaxor ferroelectric materials have great potential in high energy storage capacitors due to their small hysteresis, low remanent polarization and high breakdown electric field. In this work, (Na0.5Bi0.5)TiO3 thin films with ~400 nm were prepared on (001) SrTiO3 substrate by pulsed laser deposition technology. The (Na0.5Bi0.5)TiO3 films have good crystallization quality with a dense microstructure and relaxor ferroelectric properties, as confirmed by the elongated hysteresis loops and the relation of <A>∝Eα. A high Eb of up to 1400 kV/cm is obtained, which contributes to a good Wrec of 24.6 J/cm3 and η of 72% in (Na0.5Bi0.5)TiO3 film. In addition, the variations of Wrec and η are less than 4% and 10% in the temperature range of 20–120°C. In the frequency range of 103 Hz–2 × 104 Hz, the variations of Wrec and η are less than 10%. All those reveal the great potential of NBT film for energy storage. Full article
(This article belongs to the Special Issue High-Performance Dielectric Ceramic for Energy Storage Capacitors)
Show Figures

Figure 1

Back to TopTop