Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (99)

Search Parameters:
Keywords = promotor effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2274 KiB  
Review
Application of Invasive Bacteria for the Delivery of Anti-Cancer Therapeutics
by Rasaq Akinsola and Kumaran Narayanan
Therapeutics 2024, 1(2), 124-141; https://doi.org/10.3390/therapeutics1020011 - 20 Dec 2024
Cited by 1 | Viewed by 1629
Abstract
Bacterial vectors for biomolecule delivery to targeted organelles, facilitating temporary or continuous protein production, have emerged as a promising approach for treating acquired and inherited diseases. This method offers a selective cancer eradication and targeting strategy with minimal side effects. Bacterial vectors provide [...] Read more.
Bacterial vectors for biomolecule delivery to targeted organelles, facilitating temporary or continuous protein production, have emerged as a promising approach for treating acquired and inherited diseases. This method offers a selective cancer eradication and targeting strategy with minimal side effects. Bacterial vectors provide an alternative to viral gene delivery, given their capacity to deliver large genetic materials while inducing minimal immunogenicity and cytotoxicity. Bacteria such as Bifidobacterium, Salmonella, Clostridium, and Streptococcus have demonstrated potential for tumor-targeted biomolecule delivery or serve as oncolytic bacteria. These vectors have also been used to transfer and amplify genes encoding biomolecules such as pro-drug-converting enzymes, toxins, angiogenesis inhibitors, and cytokines. The microenvironment of necrotic tumors offers a unique opportunity for targeted therapy with the non-pathogenic anaerobic bacterium. For example, Clostridium sporogenes can germinate selectively in the necrotic regions upon injection as endospores, which helps to enhance the specificity of Clostridium sporogenes, resulting in tumor-specific colonization. Also, E. coli and Salmonella sp. can be capacitated with a hypoxic sensing promotor gene for specificity delivery into the core region of solid tumors. The uniqueness of the tumor microenvironment, including hypoxia, immunosuppression, metabolite deficiency or enrichment, and necrosis, selectively enables bacteria in the tumor. Combining traditional cancer therapy with bacterial therapy will significantly complement and cover the limitations of other treatments. This review provides an overview of the use of the bacteria vector in cancer therapy, discussing strategies to maximize delivery efficiency and address potential challenges. In this review, we discuss the potential of bacteria vectors as anti-cancer therapeutics while focusing on therapeutic delivery strategies. We highlight the complementary use of bacteria therapy with other cancer therapies and the mechanism of bacteria cancer immunotherapy with limitations and perspectives for future use. Full article
Show Figures

Figure 1

17 pages, 974 KiB  
Review
Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine
by Maria P. Spínola, Ana R. Mendes and José A. M. Prates
Foods 2024, 13(22), 3656; https://doi.org/10.3390/foods13223656 - 17 Nov 2024
Cited by 8 | Viewed by 7574
Abstract
Spirulina (Limnospira platensis) is a microalga recognised for its rich nutritional composition and diverse bioactive compounds, making it a valuable functional food, feed, and therapeutic agent. This review examines spirulina’s chemical composition, including its high levels of protein, essential fatty acids, [...] Read more.
Spirulina (Limnospira platensis) is a microalga recognised for its rich nutritional composition and diverse bioactive compounds, making it a valuable functional food, feed, and therapeutic agent. This review examines spirulina’s chemical composition, including its high levels of protein, essential fatty acids, vitamins, minerals, and bioactive compounds, such as the phycocyanin pigment, polysaccharides, and carotenoids, in food, feed, and medicine. These compounds exhibit various biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiviral, anticancer, antidiabetic and lipid-lowering effects. Spirulina’s potential to mitigate oxidative stress, enhance immune function, and inhibit tumour growth positions it as a promising candidate for preventing chronic diseases. Additionally, spirulina is gaining interest in the animal feed sector as a promotor of growth performance, improving immune responses and increasing resistance to diseases in livestock, poultry, and aquaculture. Despite its well-documented health benefits, future research is needed to optimize production/cultivation methods, improve its bioavailability, and validate its efficacy (dose–effect relationship) and safety through clinical trials and large-scale human trials. This review underscores the potential of spirulina to address global health and nutrition challenges, supporting its continued application in food, feed, and medicine. Full article
(This article belongs to the Special Issue Microalgae in Food Systems: From Cultivation to Application)
Show Figures

Figure 1

12 pages, 785 KiB  
Article
Evaluation of the Robustness Under Alkanol Stress and Adaptability of Members of the New Genus Halopseudomonas
by Simone Bertoldi, Pedro D. M. A. S. Mattos, Carla C. C. R. de Carvalho, Luzie Kruse, Stephan Thies, Hermann J. Heipieper and Christian Eberlein
Microorganisms 2024, 12(11), 2116; https://doi.org/10.3390/microorganisms12112116 - 22 Oct 2024
Viewed by 1122
Abstract
Many species of the genus Pseudomonas are known to be highly tolerant to solvents and other environmental stressors. Based on phylogenomic and comparative genomic analyses, several Pseudomonas species were recently transferred to a new genus named Halopseudomonas. Because of their unique enzymatic [...] Read more.
Many species of the genus Pseudomonas are known to be highly tolerant to solvents and other environmental stressors. Based on phylogenomic and comparative genomic analyses, several Pseudomonas species were recently transferred to a new genus named Halopseudomonas. Because of their unique enzymatic machinery, these strains are being discussed as novel biocatalysts in biotechnology. In order to test their growth parameters and stress tolerance, five Halopseudomonas strains were assessed regarding their tolerance toward different n-alkanols (1-butanol, 1-hexanol, 1-octanol, 1-decanol), as well as to salt stress and elevated temperatures. The toxicity of the solvents was investigated by their effects on bacterial growth rates and presented as EC50 concentrations. Hereby, all Halopseudomonas strains showed EC50 values up to two-fold lower than those previously detected for Pseudomonas putida. In addition, the activity of the cis-trans isomerase of unsaturated fatty acids (Cti), which is an urgent stress response mechanism known to be present in all Pseudomonas species, was monitored in the five Halopseudomonas strains. Although several of the tested species were known to contain the cti gene, no significant phenotypic activity could be detected in the presence of the assayed stressors. A bioinformatic analysis of eight cti-carrying Halopseudomonas strains examining promotor binding sites, binding motifs and signal peptides showed that most of the cti genes have a lipoprotein signal peptide and promotor regions and binding motifs that do not coincide with those of Pseudomonas. These insights represent putative reasons for the absence of the expected Cti activity in Halopseudomonas, which in turn has always been observed in cti-carrying Pseudomonas. The lack of Cti activity under membrane stress conditions when the cti gene is present has never been documented, and this could represent potential negative implications on the utility of the genus Halopseudomonas for some biotechnological applications. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 1218 KiB  
Review
Applications of Organic Acids in Poultry Production: An Updated and Comprehensive Review
by Wafaa A. Abd El-Ghany
Agriculture 2024, 14(10), 1756; https://doi.org/10.3390/agriculture14101756 - 5 Oct 2024
Cited by 4 | Viewed by 4039
Abstract
Feed additive antibiotics have been used for many decades as growth promotors or antibacterial substances worldwide. However, the adverse impacts of using antibiotics in animal or poultry feeds are not widely recognized. Therefore, the search for alternatives, such as probiotics, prebiotics, phytobiotics, post-biotics, [...] Read more.
Feed additive antibiotics have been used for many decades as growth promotors or antibacterial substances worldwide. However, the adverse impacts of using antibiotics in animal or poultry feeds are not widely recognized. Therefore, the search for alternatives, such as probiotics, prebiotics, phytobiotics, post-biotics, bacteriophages, enzymes, essential oils, or organic acids (OAs), has become urgent. OAs are produced by beneficial intestinal bacteria through the fermentation of carbohydrates. OAs and their salts are still used as feed preservatives. They have long been added to feed in order to minimize contamination and the growth of harmful bacteria and fungi, reduce deterioration, and prolong the shelf life of feed commodities. Moreover, they have been mostly added to poultry feed as a blend to obtain maximal beneficial effects. The supplementation of poultry with OAs could improve the growth performance parameters and carcass traits, promote the utilization of nutrients, boost the immune response, and inhibit the growth of pathogenic bacteria. Therefore, this review article provides valuable insights into the potential benefits of using OAs in reducing microbial load, enhancing performance parameters in broilers and layers, improving gut health, and boosting the immune response. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

31 pages, 2531 KiB  
Review
Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer’s Disease: The Potential Role of a Novel Nano-Compound—The Transdermal Glutathione–Cyclodextrin Complex
by Ray Yutani, Vishwanath Venketaraman and Nisar Sheren
Antioxidants 2024, 13(9), 1106; https://doi.org/10.3390/antiox13091106 - 12 Sep 2024
Viewed by 2136
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants—primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer’s disease, that are associated with OS. These dissimilar illnesses are, in order, viral [...] Read more.
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants—primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer’s disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach. Full article
Show Figures

Figure 1

17 pages, 4984 KiB  
Article
Advancements in Methane Dry Reforming: Investigating Nickel–Zeolite Catalysts Enhanced by Promoter Integration
by Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed I. Osman, Ahmed E. Abasaeed, Yousef M. Alanazi, Fahad S. Almubaddel and Ahmed S. Al-Fatesh
Processes 2024, 12(9), 1826; https://doi.org/10.3390/pr12091826 - 28 Aug 2024
Viewed by 1349
Abstract
A promising method for converting greenhouse gases such as CO2 and CH4 into useful syngas is the dry reformation of methane (DRM). 5Ni-ZSM-5 and 2 wt.% Ce, Cs, Sr, Fe, and Cu-promoted 5Ni-ZSM-5 catalysts are investigated for the DRM at 700 [...] Read more.
A promising method for converting greenhouse gases such as CO2 and CH4 into useful syngas is the dry reformation of methane (DRM). 5Ni-ZSM-5 and 2 wt.% Ce, Cs, Sr, Fe, and Cu-promoted 5Ni-ZSM-5 catalysts are investigated for the DRM at 700 °C under atmospheric pressure. The characterization, including XRD, TPR, TPD, TPO, N2 adsorption–desorption, TGA, TEM, and Raman spectroscopy, revealed that the catalyst’s active sites are distributed throughout the pore channels and on the surface, contributing to the stability of the catalyst. Specifically, the CO2-TPO followed by the O2-TPO experiment using spent catalysts confirmed the oxidizing capacity of CO2 during the DRM reaction. The Ce-promoted catalyst showed the greatest increase in catalytic activity among other catalysts. The 5Ni+2Ce-ZSM-5 catalyst exhibited twice the concentration of acid sites compared to the Cs-promoted counterpart, even though both catalysts achieved similar quantities of active and basic sites. Without compromising H2 and CO selectivity, this finding underscores the crucial role of acid sites in enhancing CH4 and CO2 conversion. With a GHSV of 42,000 mL/(h.gcat), the 5Ni+2Ce-ZSM-5 catalyst demonstrated impressive CH4 conversion rates of 42% at 700 °C and 70% at 800 °C. The reactants spend more time over catalysts during the subsequent reduction of GHSV to 21,000 mL/(h.gcat), resulting in the best catalytic performance with 80% CH4 and 83% CO2 conversions. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 1947 KiB  
Article
Radiation-Tolerant Fibrivirga spp. from Rhizosphere Soil: Genome Insights and Potential in Agriculture
by Sathiyaraj Srinivasan
Genes 2024, 15(8), 1048; https://doi.org/10.3390/genes15081048 - 9 Aug 2024
Cited by 1 | Viewed by 1173
Abstract
The rhizosphere of plants contains a wide range of microorganisms that can be cultivated and used for the benefit of agricultural practices. From garden soil near the rhizosphere region, Strain ES10-3-2-2 was isolated, and the cells were Gram-negative, aerobic, non-spore-forming rods that were [...] Read more.
The rhizosphere of plants contains a wide range of microorganisms that can be cultivated and used for the benefit of agricultural practices. From garden soil near the rhizosphere region, Strain ES10-3-2-2 was isolated, and the cells were Gram-negative, aerobic, non-spore-forming rods that were 0.3–0.8 µm in diameter and 1.5–2.5 µm in length. The neighbor-joining method on 16S rDNA similarity revealed that the strain exhibited the highest sequence similarities with “Fibrivirga algicola JA-25” (99.2%) and Fibrella forsythia HMF5405T (97.3%). To further explore its biotechnological potentialities, we sequenced the complete genome of this strain employing the PacBio RSII sequencing platform. The genome of Strain ES10-3-2-2 comprises a 6,408,035 bp circular chromosome with a 52.8% GC content, including 5038 protein-coding genes and 52 RNA genes. The sequencing also identified three plasmids measuring 212,574 bp, 175,683 bp, and 81,564 bp. Intriguingly, annotations derived from the NCBI-PGAP, eggnog, and KEGG databases indicated the presence of genes affiliated with radiation-resistance pathway genes and plant-growth promotor key/biofertilization-related genes regarding Fe acquisition, K and P assimilation, CO2 fixation, and Fe solubilization, with essential roles in agroecosystems, as well as genes related to siderophore regulation. Additionally, T1SS, T6SS, and T9SS secretion systems are present in this species, like plant-associated bacteria. The inoculation of Strain ES10-3-2-2 to Arabidopsis significantly increases the fresh shoot and root biomass, thereby maintaining the plant quality compared to uninoculated controls. This work represents a link between radiation tolerance and the plant-growth mechanism of Strain ES10-3-2-2 based on in vitro experiments and bioinformatic approaches. Overall, the radiation-tolerant bacteria might enable the development of microbiological preparations that are extremely effective at increasing plant biomass and soil fertility, both of which are crucial for sustainable agriculture. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2024)
Show Figures

Figure 1

21 pages, 3829 KiB  
Article
Role of Protein Tyrosine Phosphatase Receptor Type E (PTPRE) in Chemoresistant Retinoblastoma
by Lars Mohren, Annika Doege, Natalia Miroschnikov, Oliver Dräger, Maike Anna Busch and Nicole Dünker
Int. J. Mol. Sci. 2024, 25(8), 4572; https://doi.org/10.3390/ijms25084572 - 22 Apr 2024
Cited by 2 | Viewed by 1880
Abstract
Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the “classical” protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different [...] Read more.
Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the “classical” protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different human cancer cells, but its role in retinoblastoma (RB), the most common malignant eye cancer in children, remains to be elucidated. Etoposide-resistant RB cell lines and RB patients display significant higher PTPRE expression levels compared to chemosensitive counterparts and the healthy human retina, respectively. PTPRE promotor methylation analyses revealed that PTPRE expression in RB is not regulated via this mechanism. Lentiviral PTPRE knockdown (KD) induced a significant decrease in growth kinetics, cell viability, and anchorage-independent growth of etoposide-resistant Y79 and WERI RB cells. Caspase-dependent apoptosis rates were significantly increased and a re-sensitization for etoposide could be observed after PTPRE depletion. In vivo chicken chorioallantoic membrane (CAM) assays revealed decreased tumor formation capacity as well as reduced tumor size and weight following PTPRE KD. Expression levels of miR631 were significantly downregulated in etoposide-resistant RB cells and patients. Transient miR631 overexpression resulted in significantly decreased PTPRE levels and concomitantly decreased proliferation and increased apoptosis levels in etoposide-resistant RB cells. These impacts mirror PTPRE KD effects, indicating a regulation of PTPRE via this miR. Additionally, PTPRE KD led to altered phosphorylation of protein kinase SGK3 and—dependent on the cell line—AKT and ERK1/2, suggesting potential PTPRE downstream signaling pathways. In summary, these results indicate an oncogenic role of PTPRE in chemoresistant retinoblastoma. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

26 pages, 8687 KiB  
Article
Catalytic Supercritical Water Gasification of Canola Straw with Promoted and Supported Nickel-Based Catalysts
by Kapil Khandelwal and Ajay K. Dalai
Molecules 2024, 29(4), 911; https://doi.org/10.3390/molecules29040911 - 19 Feb 2024
Cited by 7 | Viewed by 1865
Abstract
Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass [...] Read more.
Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass such as canola straw suffers from low hydrogen yield, hydrogen selectivity, and conversion efficiencies. Cost-effective and sustainable catalysts with high catalytic activity for supercritical water gasification are increasingly becoming a focal point of interest. In this research study, novel wet-impregnated nickel-based catalysts supported on carbon-negative hydrochar obtained from hydrothermal liquefaction (HTL-HC) and hydrothermal carbonization (HTC-HC) of canola straw, along with other nickel-supported catalysts such as Ni/Al2O3, Ni/ZrO2, Ni/CNT, and Ni/AC, were synthesized for gasification of canola straw on previously optimized reaction conditions of 500 °C, 60 min, 10 wt%, and 23–25 MPa. The order of hydrogen yield for the six supports was (10.5 mmol/g) Ni/ZrO2 > (9.9 mmol/g) Ni/Al2O3 > (9.1 mmol/g) Ni/HTL-HC > (8.8 mmol/g) Ni/HTC-HC > (7.7 mmol/g) Ni/AC > (6.8 mmol/g) Ni/CNT, compared to 8.1 mmol/g for the non-catalytic run. The most suitable Ni/ZrO2 catalyst was further modified using promotors such as K, Zn, and Ce, and the performance of the promoted Ni/ZrO2 catalysts was evaluated. Ni-Ce/ZrO2 showed the highest hydrogen yield of 12.9 mmol/g, followed by 12.0 mmol/g for Ni-Zn/ZrO2 and 11.6 mmol/g for Ni-K/ZrO2. The most suitable Ni-Ce/ZrO2 catalysts also demonstrated high stability over their repeated use. The superior performance of the Ni-Ce/ZrO2 was due to its high nickel dispersion, resilience to sintering, high thermal stability, and oxygen storage capabilities to minimize coke deposition. Full article
(This article belongs to the Special Issue Advances in Thermochemical Conversion of Solid Wastes)
Show Figures

Figure 1

13 pages, 3195 KiB  
Article
Teadenol B as a Component of Microorganism-Fermented Tea Extract Inhibited Breast Cancers by Promoting Autophagy
by Ying Zhao, Zhang-Gui Ding, Yu-Jie Yan, Rui Yang, Miao-Miao Qi, Shu-Kang Pan, Ji-Ling Xie, Yu-Hui Sun and Jin Xiang
Molecules 2024, 29(4), 872; https://doi.org/10.3390/molecules29040872 - 16 Feb 2024
Viewed by 2015
Abstract
Breast cancer is a significant threat to life and health, which needs more safe and effective drugs to be explored. Teadenol B is a characteristic chemical component of microbial fermented tea. This study discovered that teadenol B could exhibit obvious inhibitory effects on [...] Read more.
Breast cancer is a significant threat to life and health, which needs more safe and effective drugs to be explored. Teadenol B is a characteristic chemical component of microbial fermented tea. This study discovered that teadenol B could exhibit obvious inhibitory effects on all four different clinical subtype characteristics of breast cancer cells. Proteomic studies show that deoxycytidine triphosphate deaminase (DCTD), which could block DNA synthesis and repair DNA damage, had the most significant and consistent reduction in all four types of breast cancer cells with the treatment of teadenol B. Considering MDA-MB-231 cells exhibit poor clinical prognosis and displayed substantial statistical differences in KEGG pathway enrichment analysis results, we investigated its impact on the size and growth of MDA-MB-231 triple-negative breast tumors transplanted into nude mice and demonstrated that teadenol B significantly suppressed tumor growth without affecting body weight significantly. Finally, we found that the conversion of LC3-I to LC3-II in MDA-MB-231 increased significantly with teadenol B treatment. This proved that teadenol B could be a strong autophagy promotor, which explained the down-regulation of DCTD to some extent and may be the potential mechanism underlying teadenol B’s anti-breast cancer effects. This finding provides new evidence for drinking fermented tea to prevent breast cancer and highlights the potential of teadenol B as a novel therapeutic option for breast cancer prevention and treatment, necessitating further investigations to clarify its exact target and the details involved. Full article
(This article belongs to the Special Issue Research on Chemical Composition and Activity of Natural Products)
Show Figures

Graphical abstract

22 pages, 10430 KiB  
Article
Radiation Hormesis in Barley Manifests as Changes in Growth Dynamics Coordinated with the Expression of PM19L-like, CML31-like, and AOS2-like
by Elizaveta Kazakova, Irina Gorbatova, Anastasia Khanova, Ekaterina Shesterikova, Ivan Pishenin, Alexandr Prazyan, Mikhail Podlutskii, Yana Blinova, Sofia Bitarishvili, Ekaterina Bondarenko, Alena Smirnova, Maria Lychenkova, Vladimir Bondarenko, Marina Korol, Daria Babina, Ekaterina Makarenko and Polina Volkova
Int. J. Mol. Sci. 2024, 25(2), 974; https://doi.org/10.3390/ijms25020974 - 12 Jan 2024
Cited by 3 | Viewed by 1963
Abstract
The stimulation of growth and development of crops using ionising radiation (radiation hormesis) has been reported by many research groups. However, specific genes contributing to the radiation stimulation of plant growth are largely unknown. In this work, we studied the impact of the [...] Read more.
The stimulation of growth and development of crops using ionising radiation (radiation hormesis) has been reported by many research groups. However, specific genes contributing to the radiation stimulation of plant growth are largely unknown. In this work, we studied the impact of the low-dose γ-irradiation of barley seeds on the growth dynamics and gene expression of eight barley cultivars in a greenhouse experiment. Our findings confirmed that candidate genes of the radiation growth stimulation, previously established in barley seedlings (PM19L-like, CML31-like, and AOS2-like), are significant in radiation hormesis throughout ontogeny. In γ-stimulated cultivars, the expression of these genes was aligned with the growth dynamics, yield parameters, and physiological conditions of plants. We identified contrasting cultivars for future gene editing and found that the γ-stimulated cultivar possessed some specific abiotic stress-responsive elements in the promotors of candidate genes, possibly revealing a new level of radiation hormesis effect execution. These results can be used in creating new productive barley cultivars, ecological toxicology of radionuclides, and eustress biology studies. Full article
(This article belongs to the Special Issue Radiation Hormesis in Plants)
Show Figures

Figure 1

20 pages, 314 KiB  
Review
Chronic Nonbacterial Osteomyelitis in Inflammatory Bowel Disease
by Ariadni Tzaneti, Elli Athanasopoulou, Smaragdi Fessatou and Lampros Fotis
Life 2023, 13(12), 2347; https://doi.org/10.3390/life13122347 - 15 Dec 2023
Cited by 3 | Viewed by 2550
Abstract
Chronic nonbacterial osteomyelitis (CNO), also known as chronic recurrent multifocal osteomyelitis (CRMO), is a rare autoinflammatory bone disease primarily affecting children and adolescents. This review presents a comprehensive analysis of the intricate relationship between CNO and inflammatory bowel disease (IBD), shedding light on [...] Read more.
Chronic nonbacterial osteomyelitis (CNO), also known as chronic recurrent multifocal osteomyelitis (CRMO), is a rare autoinflammatory bone disease primarily affecting children and adolescents. This review presents a comprehensive analysis of the intricate relationship between CNO and inflammatory bowel disease (IBD), shedding light on shared pathophysiological mechanisms and clinical management. A thorough literature review was conducted, encompassing 24 case reports involving 40 patients. The demographic distribution of patients revealed a near-equal gender ratio, with a median age of diagnosis at 12 years. The diagnosis patterns showed a higher proportion of CNO as the initial diagnosis, while Crohn’s disease was more prevalent than ulcerative colitis. The time interval between the clinical presentations varied, ranging from simultaneous detection to a substantial 15-year gap. Treatment modalities included nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, aminosalicylates, and biologic agents, such as infliximab, often overlapping in their use and suggesting shared pathophysiological pathways. Both conditions displayed systemic manifestations, and patients often responded well to immunosuppressive medications. The pathophysiology of CNO involves a genetic predisposition, cytokine dysregulation, and osteoclast activation. Dysregulated innate immunity results in immune cell infiltration into bones, causing sterile bone lesions. Notably, emerging evidence hints at a potential link between the microbiome and CNO. In contrast, IBD results from imbalanced mucosal immune responses to the intestinal microbiota. Polymorphisms in the promotor region of IL-10, common cytokines, immune cells, and genetic markers indicate shared immunological and genetic factors between CNO and IBD. Both conditions also involve extraintestinal symptoms. This analysis underscores the need for clinical awareness of the co-occurrence of CNO and IBD, especially among pediatric patients. A deepened understanding of the connections between these seemingly distinct diseases could lead to more effective management and improved patient outcomes. Full article
15 pages, 1287 KiB  
Article
Modulation of Swine Gut Microbiota by Phytogenic Blends and High Concentrations of Casein in a Validated Swine Large Intestinal In Vitro Model
by Igor V. Popov, Naiana Einhardt Manzke, Mônica Maurer Sost, Jessica Verhoeven, Sanne Verbruggen, Iuliia P. Chebotareva, Alexey M. Ermakov and Koen Venema
Vet. Sci. 2023, 10(12), 677; https://doi.org/10.3390/vetsci10120677 - 27 Nov 2023
Cited by 3 | Viewed by 2623
Abstract
Phytogenic feed additives are gaining popularity in livestock as a replacement for antibiotic growth promotors. Some phytogenic blends (PB) positively affect the production performance, inhibit pathogens within the gut microbiota, and improve the overall health of farm animals. In this study, a swine [...] Read more.
Phytogenic feed additives are gaining popularity in livestock as a replacement for antibiotic growth promotors. Some phytogenic blends (PB) positively affect the production performance, inhibit pathogens within the gut microbiota, and improve the overall health of farm animals. In this study, a swine large intestine in vitro model was used to evaluate the effect of two PBs, alone or in combination with casein, on swine gut microbiota. As a result, the combination of casein with PB1 had the most beneficial effects on swine gut microbiota, as it increased the relative abundance of some commensal bacteria and two genera (Lactobacillus and Oscillospiraceae UCG-002), which are associated with greater production performance in pigs. At the same time, supplementation with PBs did not lead to an increase in opportunistic pathogens, indicating their safety for pigs. Both PBs showed fewer changes in swine gut microbiota compared to interventions with added casein. In contrast, casein supplementation significantly increased beta diversity and the relative abundance of commensal as well as potentially beneficial bacteria. In conclusion, the combination of casein with PBs, in particular PB1, had the most beneficial effects among the studied supplements in vitro, with respect to microbiota modulation and metabolite production, although this data should be proven in further in vivo studies. Full article
(This article belongs to the Special Issue Pig Diet and Growth Performance)
Show Figures

Figure 1

18 pages, 2368 KiB  
Article
Exploring the Effects of Rearing Densities on Epigenetic Modifications in the Zebrafish Gonads
by Alejandro Valdivieso, Marta Caballero-Huertas, Javier Moraleda-Prados, Francesc Piferrer and Laia Ribas
Int. J. Mol. Sci. 2023, 24(21), 16002; https://doi.org/10.3390/ijms242116002 - 6 Nov 2023
Cited by 5 | Viewed by 2513
Abstract
Rearing density directly impacts fish welfare, which, in turn, affects productivity in aquaculture. Previous studies have indicated that high-density rearing during sexual development in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations. In recent years, research [...] Read more.
Rearing density directly impacts fish welfare, which, in turn, affects productivity in aquaculture. Previous studies have indicated that high-density rearing during sexual development in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations. In recent years, research has defined the relevance of the interactions between the environment and epigenetics playing a key role in the final phenotype. However, the underlying epigenetic mechanisms of individuals exposed to confinement remain elucidated. By using zebrafish (Danio rerio), the DNA methylation promotor region and the gene expression patterns of six genes, namely dnmt1, cyp19a1a, dmrt1, cyp11c1, hsd17b1, and hsd11b2, involved in the DNA maintenance methylation, reproduction, and stress were assessed. Zebrafish larvae were subjected to two high-density conditions (9 and 66 fish/L) during two periods of overlapping sex differentiation of this species (7 to 18 and 18 to 45 days post-fertilization, dpf). Results showed a significant masculinization in the populations of fish subjected to high densities from 18 to 45 dpf. In adulthood, the dnmt1 gene was differentially hypomethylated in ovaries and its expression was significantly downregulated in the testes of fish exposed to high-density. Further, the cyp19a1a gene showed downregulation of gene expression in the ovaries of fish subjected to elevated density, as previously observed in other studies. We proposed dnmt1 as a potential testicular epimarker and the expression of ovarian cyp19a1a as a potential biomarker for predicting stress originated from high densities during the early stages of development. These findings highlight the importance of rearing densities by long-lasting effects in adulthood conveying cautions for stocking protocols in fish hatcheries. Full article
(This article belongs to the Special Issue Fish Genomics and Developmental Biology)
Show Figures

Figure 1

16 pages, 3650 KiB  
Article
Promoter Effect on Carbon Nanosphere-Encapsulated Fe-Co Catalysts for Converting CO2 to Light Olefins
by Daniel Weber, Akash Gandotra, John Schossig, Heng Zhang, Michael Wildy, Wanying Wei, Kevin Arizapana, Jin Zhong Zhang, Ping Lu and Cheng Zhang
Catalysts 2023, 13(11), 1416; https://doi.org/10.3390/catal13111416 - 4 Nov 2023
Cited by 3 | Viewed by 1878
Abstract
For this work, we investigated the promotor effect (M = Na+, K+, Ce3+, Zn2+, Mn2+) on carbon nanosphere-encapsulated bimetallic Fe-Co core–shell catalysts for CO2 hydrogenation, promising selectivity for converting CO2 to [...] Read more.
For this work, we investigated the promotor effect (M = Na+, K+, Ce3+, Zn2+, Mn2+) on carbon nanosphere-encapsulated bimetallic Fe-Co core–shell catalysts for CO2 hydrogenation, promising selectivity for converting CO2 to light olefins. The fresh and spent catalysts were characterized using a combination of experimental techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TGA–DSC), and Raman spectroscopy, and our results reveal that the addition of the promotor M enhanced the formation of graphitic carbon and metal carbides in the promoted catalysts when compared with the unpromoted catalysts. The metal carbides were determined to be the active sites for the production of light olefins. Full article
(This article belongs to the Special Issue Feature Papers in "Industrial Catalysis" Section)
Show Figures

Figure 1

Back to TopTop