E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Topical Collection "Regulation by Non-Coding RNAs"

Quicklinks

A topical collection in International Journal of Molecular Sciences (ISSN 1422-0067). This collection belongs to the section "Biochemistry, Molecular Biology and Biophysics".

Editor

Collection Editor
Dr. Martin Pichler

Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Auenbruggerplatz 15, Austria
Website | E-Mail
Interests: Non-coding RNAs; MicroRNAs; cancer; Inflammation; Metabolism; Gene expression; cancer stem cells; epithelial-mesenchymal transition

Topical Collection Information

Dear Colleagues,

Non-Coding RNAs are currently a hot research topic in many fields of biology, medicine, and chemistry. It is increasingly clear that non-coding RNAs are involved in fundamentally physiological and pathological processes. These processes touch on many important disciplines, from metabolism to cancer. Non-coding RNAs are regulative: they mainly influence biological processes by regulating other (protein-)coding gene expression. By doing this, the cellular properties of development and growth, stem cell regeneration, apoptosis, authophagy, etc., are strictly controlled by non-coding RNAs. This collection is dedicated to summarizing and highlighting the current research concerning the role of non-coding RNAs in regulating the aforementioned functions. The underlying mechanisms of action, the target molecules, the interactor pairs, and the pertinent cellular functions should all be presented. All relevant fields in medicine (with a special focus on metabolism, cancer, and inflammation) are of interest. The classes of non-coding RNAs should include microRNAs, other small non-coding RNAs, and long non-coding RNAs. Original research articles, review articles, and research letters are welcomed.

Dr. Martin Pichler
Collection Editor

Manuscript Submission Information

Manuscripts for the topical collection can be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on this website. The topical collection considers regular research articles, short communications and review articles. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs).

Print Edition available!
A Print Edition of this Special Issue is available here.

Hardcover: 40.00 CHF*
Pages: 243
*For contributing authors or bulk orders special prices may apply.
Prices include shipping.

Keywords

  • Regulatory RNA
  • sRNA
  • ncRNA
  • lncRNA
  • miRNA
  • siRNA
  • piRNA
  • CRISPR RNA
  • regulatory small RNA fragments

Related Special Issues

Published Papers (71 papers)

2016

Jump to: 2015, 2014

Open AccessArticle Screening the Expression Changes in MicroRNAs and Their Target Genes in Mature Cementoblasts Stimulated with Cyclic Tensile Stress
Int. J. Mol. Sci. 2016, 17(12), 2024; doi:10.3390/ijms17122024 (registering DOI)
Received: 11 October 2016 / Revised: 22 November 2016 / Accepted: 24 November 2016 / Published: 7 December 2016
PDF Full-text (2970 KB) | HTML Full-text | XML Full-text
Abstract
Cementum is a thin layer of cementoblast-produced mineralized tissue covering the root surfaces of teeth. Mechanical forces, which are produced during masticatory activity, play a paramount role in stimulating cementoblastogenesis, which thereby facilitates the maintenance, remodeling and integrity of cementum. However, hitherto, the
[...] Read more.
Cementum is a thin layer of cementoblast-produced mineralized tissue covering the root surfaces of teeth. Mechanical forces, which are produced during masticatory activity, play a paramount role in stimulating cementoblastogenesis, which thereby facilitates the maintenance, remodeling and integrity of cementum. However, hitherto, the extent to which a post-transcriptional modulation mechanism is involved in this process has rarely been reported. In this study, a mature murine cementoblast cell line OCCM-30 cells (immortalized osteocalcin positive cementoblasts) was cultured and subjected to cyclic tensile stress (0.5 Hz, 2000 µstrain). We showed that the cyclic tensile stress could not only rearrange the cell alignment, but also influence the proliferation in an S-shaped manner. Furthermore, cyclic tensile stress could significantly promote cementoblastogenesis-related genes, proteins and mineralized nodules. From the miRNA array analyses, we found that 60 and 103 miRNAs were significantly altered 6 and 18 h after the stimulation using cyclic tensile stress, respectively. Based on a literature review and bioinformatics analyses, we found that miR-146b-5p and its target gene Smad4 play an important role in this procedure. The upregulation of miR-146b-5p and downregulation of Smad4 induced by the tensile stress were further confirmed by qRT-PCR. The direct binding of miR-146b-5p to the three prime untranslated region (3′ UTR) of Smad4 was established using a dual-luciferase reporter assay. Taken together, these results suggest an important involvement of miR-146b-5p and its target gene Smad4 in the cementoblastogenesis of mature cementoblasts. Full article
Figures

Open AccessArticle Relevance of MicroRNA200 Family and MicroRNA205 for Epithelial to Mesenchymal Transition and Clinical Outcome in Biliary Tract Cancer Patients
Int. J. Mol. Sci. 2016, 17(12), 2053; doi:10.3390/ijms17122053 (registering DOI)
Received: 3 November 2016 / Revised: 30 November 2016 / Accepted: 1 December 2016 / Published: 7 December 2016
PDF Full-text (7866 KB) | HTML Full-text | XML Full-text
Abstract
Extensive stromal interaction is one reason for the dismal outcome of biliary tract cancer (BTC) patients. Epithelial to mesenchymal transition (EMT) is involved in tumor invasion and metastasis and is partly regulated by microRNAs (miRs). This study explores the expression of anti-EMT miR200
[...] Read more.
Extensive stromal interaction is one reason for the dismal outcome of biliary tract cancer (BTC) patients. Epithelial to mesenchymal transition (EMT) is involved in tumor invasion and metastasis and is partly regulated by microRNAs (miRs). This study explores the expression of anti-EMT miR200 family (miR141, −200a/b/c, −429) and miR205 as well as the EMT-related proteins E-cadherin and vimentin in a panel of BTC cell lines and clinical specimens by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry, respectively. MicroRNA expression was correlated to (i) the expression patterns of E-cadherin and vimentin; (ii) clinicopathological characteristics; and (iii) survival data. MicroRNA-200 family and miR205 were expressed in all BTC cells and clinical specimens. E-cadherin and vimentin showed a mutually exclusive expression pattern in both, in vitro and in vivo. Expression of miR200 family members positively correlated with E-cadherin and negatively with vimentin expression in BTC cells and specimens. High expression of miR200 family members (but not miR205) and E-cadherin was associated with longer survival, while low miR200 family and high vimentin expression was a predictor of unfavorable survival. Overall, the current study demonstrates the relevance of the miR200 family in EMT of BTC tumors and suggests these miRs as predictors for positive outcome. Full article
Figures

Open AccessArticle Comprehensive Analysis of miRNome Alterations in Response to Sorafenib Treatment in Colorectal Cancer Cells
Int. J. Mol. Sci. 2016, 17(12), 2011; doi:10.3390/ijms17122011
Received: 25 August 2016 / Revised: 18 November 2016 / Accepted: 24 November 2016 / Published: 1 December 2016
PDF Full-text (4359 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs) are master regulators of drug resistance and have been previously proposed as potential biomarkers for the prediction of therapeutic response in colorectal cancer (CRC). Sorafenib, a multi-kinase inhibitor which has been approved for the treatment of liver, renal and thyroid cancer,
[...] Read more.
MicroRNAs (miRNAs) are master regulators of drug resistance and have been previously proposed as potential biomarkers for the prediction of therapeutic response in colorectal cancer (CRC). Sorafenib, a multi-kinase inhibitor which has been approved for the treatment of liver, renal and thyroid cancer, is currently being studied as a monotherapy in selected molecular subtypes or in combination with other drugs in metastatic CRC. In this study, we explored sorafenib-induced cellular effects in Kirsten rat sarcoma viral oncogene homolog olog (KRAS) wild-type and KRAS-mutated CRC cell lines (Caco-2 and HRT-18), and finally profiled expression changes of specific miRNAs within the miRNome (>1000 human miRNAs) after exposure to sorafenib. Overall, sorafenib induced a time- and dose-dependent growth-inhibitory effect through S-phase cell cycle arrest in KRAS wild-type and KRAS-mutated CRC cells. In HRT-18 cells, two human miRNAs (hsa-miR-597 and hsa-miR-720) and two small RNAs (SNORD 13 and hsa-miR-3182) were identified as specifically sorafenib-induced. In Caco-2 cells, nine human miRNAs (hsa-miR-3142, hsa-miR-20a, hsa-miR-4301, hsa-miR-1290, hsa-miR-4286, hsa-miR-3182, hsa-miR-3142, hsa-miR-1246 and hsa-miR-720) were identified to be differentially regulated post sorafenib treatment. In conclusion, we confirmed sorafenib as a potential anti-neoplastic treatment strategy for CRC cells by demonstrating a growth-inhibitory and cell cycle–arresting effect of this drug. Changes in the miRNome indicate that some specific miRNAs might be relevant as indicators for sorafenib response, drug resistance and potential targets for combinatorial miRNA-based drug strategies. Full article
Figures

Open AccessReview Roles of MicroRNA across Prenatal and Postnatal Periods
Int. J. Mol. Sci. 2016, 17(12), 1994; doi:10.3390/ijms17121994
Received: 16 October 2016 / Revised: 11 November 2016 / Accepted: 17 November 2016 / Published: 28 November 2016
PDF Full-text (824 KB) | HTML Full-text | XML Full-text
Abstract
Communication between mother and offspring in mammals starts at implantation via the maternal–placental–fetal axis, and continues postpartum via milk targeted to the intestinal mucosa. MicroRNAs (miRNAs), short, noncoding single-stranded RNAs, of about 22 nucleotides in length, are actively involved in many developmental and
[...] Read more.
Communication between mother and offspring in mammals starts at implantation via the maternal–placental–fetal axis, and continues postpartum via milk targeted to the intestinal mucosa. MicroRNAs (miRNAs), short, noncoding single-stranded RNAs, of about 22 nucleotides in length, are actively involved in many developmental and physiological processes. Here we highlight the role of miRNA in the dynamic signaling that guides infant development, starting from implantation of conceptus and persisting through the prenatal and postnatal periods. miRNAs in body fluids, particularly in amniotic fluid, umbilical cord blood, and breast milk may offer new opportunities to investigate physiological and/or pathological molecular mechanisms that portend to open novel research avenues for the identification of noninvasive biomarkers. Full article
Figures

Open AccessArticle Microarray Expression Profiling of Long Non-Coding RNAs Involved in Nasopharyngeal Carcinoma Metastasis
Int. J. Mol. Sci. 2016, 17(11), 1956; doi:10.3390/ijms17111956
Received: 20 October 2016 / Revised: 15 November 2016 / Accepted: 15 November 2016 / Published: 23 November 2016
PDF Full-text (3397 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Increasing evidence has demonstrated a significant role for long non-coding RNAs (lncRNAs) in tumorigenesis. However, their functions in nasopharyngeal carcinoma (NPC) metastasis remain largely unknown. In this study, a model comparing high and low metastatic NPC cell lines (5-8F vs. 6-10B and S18
[...] Read more.
Increasing evidence has demonstrated a significant role for long non-coding RNAs (lncRNAs) in tumorigenesis. However, their functions in nasopharyngeal carcinoma (NPC) metastasis remain largely unknown. In this study, a model comparing high and low metastatic NPC cell lines (5-8F vs. 6-10B and S18 vs. S26) was constructed to determine the expression profile of lncRNAs using the microarray analysis, and we found 167 lncRNAs and 209 mRNAs were differentially expressed. Bioinformatic analysis indicated that the dysregulated mRNAs participated in important biological regulatory functions in NPC. Validation of 26 significantly dysregulated lncRNAs by qRT-PCR showed the expression patterns of 22 lncRNAs were in accordance with the microarray data. Furthermore, the expression level of ENST00000470135, which was the most upregulated lncRNA in high metastatic cell lines, was significantly higher in NPC cell lines and tissues with lymph node metastasis (LNM) and knocking down ENST00000470135 suppressed the migration, invasion and proliferation of NPC cells in vitro. In conclusion, our study revealed expression patterns of lncRNAs in NPC metastasis. The dysregulated lncRNAs may act as novel biomarkers and therapeutic targets for NPC. Full article
Figures

Figure 1

Open AccessArticle MicroRNAs 10a and 10b Regulate the Expression of Human Platelet Glycoprotein Ibα for Normal Megakaryopoiesis
Int. J. Mol. Sci. 2016, 17(11), 1873; doi:10.3390/ijms17111873
Received: 17 August 2016 / Revised: 3 October 2016 / Accepted: 3 November 2016 / Published: 9 November 2016
PDF Full-text (1303 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs are a class of small non-coding RNAs that bind to the three prime untranslated region (3′-UTR) of target mRNAs. They cause a cleavage or an inhibition of the translation of target mRNAs, thus regulating gene expression. Here, we employed three prediction tools
[...] Read more.
MicroRNAs are a class of small non-coding RNAs that bind to the three prime untranslated region (3′-UTR) of target mRNAs. They cause a cleavage or an inhibition of the translation of target mRNAs, thus regulating gene expression. Here, we employed three prediction tools to search for potential miRNA target sites in the 3′-UTR of the human platelet glycoprotein (GP) 1BA gene. A luciferase reporter assay shows that miR-10a and -10b sites are functional. When miR-10a or -10b mimics were transfected into the GP Ibβ/GP IX-expressing cells, along with a DNA construct harboring both the coding and 3′-UTR sequences of the human GP1BA gene, we found that they inhibit the transient expression of GP Ibα on the cell surface. When the miR-10a or -10b mimics were introduced into murine progenitor cells, upon megakaryocyte differentiation, we found that GP Ibα mRNA expression was markedly reduced, suggesting that a miRNA-induced mRNA degradation is at work. Thus, our study identifies GP Ibα as a novel target of miR-10a and -10b, suggesting that a drastic reduction in the levels of miR-10a and -10b in the late stage of megakaryopoiesis is required to allow the expression of human GP Ibα and the formation of the GP Ib-IX-V complex. Full article
Figures

Figure 1

Open AccessArticle X-Linked miRNAs Associated with Gender Differences in Rheumatoid Arthritis
Int. J. Mol. Sci. 2016, 17(11), 1852; doi:10.3390/ijms17111852
Received: 22 August 2016 / Revised: 17 October 2016 / Accepted: 31 October 2016 / Published: 8 November 2016
PDF Full-text (2912 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that predominantly affects women. MicroRNAs have emerged as crucial regulators of the immune system, whose expression is deregulated in RA. We aimed at quantifying the expression level of 14 miRNAs located on the X chromosome and
[...] Read more.
Rheumatoid arthritis (RA) is an autoimmune disease that predominantly affects women. MicroRNAs have emerged as crucial regulators of the immune system, whose expression is deregulated in RA. We aimed at quantifying the expression level of 14 miRNAs located on the X chromosome and at identifying whether differences are associated with disease and/or sex. A case–control study of 21 RA patients and 22 age- and sex-matched healthy controls was performed on peripheral blood mononuclear cells. The expression level of five miRNAs (miR-221, miR-222, miR-532, miR-106a, and miR-98) was significantly different between RA and controls when stratifying by sex, and the expression level of four miRNAs (miR-222, miR-532, miR-98, and miR-92a) was significantly different between RA females and males. The expression quantitative trait loci (eQTL) analysis revealed a significant gender effect of the FoxP3 promoter polymorphism rs3761548A/C on miR-221, miR-222 and miR-532 expression levels, and of the FoxP3 polymorphism rs2232365A/G on miR-221 expression levels in PBMC of RA patients. These data further support the involvement of the X chromosome in RA susceptibility. X-linked miRNAs, in the context of sex differences, might provide novel insight into new molecular mechanisms and potential therapeutic targets in RA for disease treatment and prevention. Full article
Figures

Open AccessArticle Upregulated MicroRNA-25 Mediates the Migration of Melanoma Cells by Targeting DKK3 through the WNT/β-Catenin Pathway
Int. J. Mol. Sci. 2016, 17(11), 1124; doi:10.3390/ijms17111124
Received: 14 April 2016 / Revised: 20 May 2016 / Accepted: 31 May 2016 / Published: 27 October 2016
PDF Full-text (4800 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Previous research indicates that microRNA-25 (miR-25) regulates carcinogenesis and the progression of various cancers, but the role of miR-25 in melanoma remains unclear. We observed that miR-25 was significantly upregulated in melanoma cell lines and tissue samples. Downregulation of miR-25 markedly suppressed invasion
[...] Read more.
Previous research indicates that microRNA-25 (miR-25) regulates carcinogenesis and the progression of various cancers, but the role of miR-25 in melanoma remains unclear. We observed that miR-25 was significantly upregulated in melanoma cell lines and tissue samples. Downregulation of miR-25 markedly suppressed invasion and proliferation of melanoma cells in vitro; however, overexpression of miR-25 markedly increased melanoma cell invasion and proliferation. Moreover, we observed Dickkopf-related protein 3 (DKK3) as a direct target of miR-25 in vitro. Upregulation of DKK3 partially attenuated the oncogenic effect of miR-25 on melanoma cells. Ectopic expression of miR-25 in melanoma cells induced β-catenin accumulation in nuclear and inhibited TCF4 (T cell factor 4) activity, as well as the expression of c-Myc and Cyclin D1. In a nude xenograft model, miR-25 upregulation significantly increased A375 melanoma growth. In summary, miR-25 is upregulated in melanoma and promotes melanoma cell proliferation and invasion, partially by targeting DKK3. These results were indicated that miR-25 may serve as a potential target for the treatment of melanoma in the future. Full article
Figures

Open AccessReview miR-155: A Novel Target in Allergic Asthma
Int. J. Mol. Sci. 2016, 17(10), 1773; doi:10.3390/ijms17101773
Received: 14 August 2016 / Revised: 19 October 2016 / Accepted: 20 October 2016 / Published: 24 October 2016
PDF Full-text (662 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs of 18–24 nucleotides in length, function to posttranscriptionally regulate protein expression. miR-155 was one of the first identified and, to date, the most studied miRNA, and has been linked to various cellular processes such as
[...] Read more.
MicroRNAs (miRNAs), a class of small non-coding RNAs of 18–24 nucleotides in length, function to posttranscriptionally regulate protein expression. miR-155 was one of the first identified and, to date, the most studied miRNA, and has been linked to various cellular processes such as modulation of immune responses and oncogenesis. Previous studies have identified miR-155 as a crucial positive regulator of Th1 immune response in autoimmune diseases, but as a suppressor of Th2 immunity in allergic disorders. However, recent studies have found new evidence that miR-155 plays an indispensible role in allergic asthma. This review summarizes the recent findings with respect to miR-155 in immune responses and the underlying mechanisms responsible for miR-155-related allergic diseases, as well as the similarities between miR-155 and glucocorticoids in immunity. Full article
Figures

Open AccessArticle A Comprehensive MicroRNA Expression Profile of Liver and Lung Metastases of Colorectal Cancer with Their Corresponding Host Tissue and Its Prognostic Impact on Survival
Int. J. Mol. Sci. 2016, 17(10), 1755; doi:10.3390/ijms17101755
Received: 20 July 2016 / Revised: 4 October 2016 / Accepted: 12 October 2016 / Published: 21 October 2016
PDF Full-text (1486 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
MicroRNAs are small non-coding RNAs with a length of 18–25 nucleotides. They can regulate tumor invasion and metastasis by changing the expression and translation of their target mRNAs. Their expression is substantially altered in colorectal cancer cells as well as in the adjacent
[...] Read more.
MicroRNAs are small non-coding RNAs with a length of 18–25 nucleotides. They can regulate tumor invasion and metastasis by changing the expression and translation of their target mRNAs. Their expression is substantially altered in colorectal cancer cells as well as in the adjacent tumor-associated stroma. Both of these compartments have a mutual influence on tumor progression. In the development of metastases, cancer cells initially interact with the host tissue. Therefore, compartment-specific expression signatures of these three locations—tumor, associated stroma, and host tissue—can provide new insights into the complex tumor biology of colorectal cancer. Frozen tissue samples of colorectal liver (n = 25) and lung metastases (n = 24) were laser microdissected to separate tumor cells and the adjacent tumor-associated stroma cells. Additionally, normal lung and liver tissue was collected from the same patients. We performed a microarray analysis in four randomly selected liver metastases and four randomly selected lung metastases, analyzing a total of 939 human miRNAs. miRNAs with a significant change >2-fold between the tumor, tumor stroma, and host tissue were analyzed in all samples using RT-qPCR (11 miRNAs) and correlated with the clinical data. We found a differential expression of several miRNAs between the tumor, the tumor-associated stroma, and the host tissue compartment. When comparing liver and lung metastases, miR-194 showed a 1.5-fold; miR-125, miR-127, and miR-192 showed a 2.5-fold; miR-19 and miR-215 a 3-fold; miR-145, miR-199-3, and miR-429 a 5-fold; miR-21 a 7-fold; and, finally, miR-199-5 a 12.5-fold downregulation in liver metastases compared to lung metastases. Furthermore miR-19, miR-125, miR-127, miR-192, miR-194, miR-199-5, and miR-215 showed a significant upregulation in the normal liver tissue compared to the normal lung tissue. Univariate analysis identified an association of poor survival with the expression of miR-125 (p = 0.05), miR-127 (p = 0.001), miR-145 (p = 0.005), miR-192 (p = 0.015), miR-194 (0.003), miR-199-5 (p = 0.008), miR-215 (p < 0.001), and miR-429 (p = 0.03) in the host liver tissue of the liver metastases. Colorectal liver and lung metastases have a unique miRNA expression profile. miRNA expression in the host tissue of colorectal liver metastases seems to be able to influence tumor progression and survival. These findings can be used in the development of tailored therapies. Full article
Figures

Figure 1

Open AccessReview Regulatory Roles of MicroRNAs in Diabetes
Int. J. Mol. Sci. 2016, 17(10), 1729; doi:10.3390/ijms17101729
Received: 17 August 2016 / Revised: 2 October 2016 / Accepted: 9 October 2016 / Published: 17 October 2016
PDF Full-text (602 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs in eukaryotes, have been recognized as significant regulators of gene expression through post-transcriptional mechanisms. To date, >2000 miRNAs have been identified in the human genome, and they orchestrate a variety of biological and pathological
[...] Read more.
MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs in eukaryotes, have been recognized as significant regulators of gene expression through post-transcriptional mechanisms. To date, >2000 miRNAs have been identified in the human genome, and they orchestrate a variety of biological and pathological processes. Disruption of miRNA levels correlates with many diseases, including diabetes mellitus, a complex multifactorial metabolic disorder affecting >400 million people worldwide. miRNAs are involved in the pathogenesis of diabetes mellitus by affecting pancreatic β-cell functions, insulin resistance, or both. In this review, we summarize the investigations of the regulatory roles of important miRNAs in diabetes, as well as the potential of circulating miRNAs as diagnostic markers for diabetes mellitus. Full article
Figures

Open AccessArticle MicroRNA-375 Functions as a Tumor-Suppressor Gene in Gastric Cancer by Targeting Recepteur d’Origine Nantais
Int. J. Mol. Sci. 2016, 17(10), 1633; doi:10.3390/ijms17101633
Received: 26 July 2016 / Revised: 1 September 2016 / Accepted: 12 September 2016 / Published: 27 September 2016
PDF Full-text (10930 KB) | HTML Full-text | XML Full-text
Abstract
Emerging evidence supports a fundamental role for microRNAs (miRNA) in regulating cancer metastasis. Recently, microRNA-375 (miR-375) was reported to be downregulated in many types of cancers, including gastric cancer. Increase in the expression of Recepteur d’Origine Nantais (RON), a receptor tyrosine
[...] Read more.
Emerging evidence supports a fundamental role for microRNAs (miRNA) in regulating cancer metastasis. Recently, microRNA-375 (miR-375) was reported to be downregulated in many types of cancers, including gastric cancer. Increase in the expression of Recepteur d’Origine Nantais (RON), a receptor tyrosine kinase, has been reported in tumors. However, the function of miR-375 and RON expression in gastric cancer metastasis has not been sufficiently studied. In silico analysis identified miR-375 binding sites in the 3′-untranslated regions (3′-UTR) of the RON-encoding gene. Expression of miR-375 resulted in reduced activity of a luciferase reporter containing the 3′-UTR fragments of RON-encoding mRNA, confirming that miR-375 directly targets the 3′-UTR of RON mRNA. Moreover, we found that overexpression of miR-375 inhibited mRNA and protein expression of RON, which was accompanied by the suppression of cell proliferation, migration, and invasion in gastric cancer AGS and MKN-28 cells. Ectopic miR-375 expression also induced G1 cell cycle arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of retinoblastoma (Rb). Knockdown of RON by RNAi, similar to miR-375 overexpression, suppressed tumorigenic properties and induced G1 arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of Rb. Thus, our study provides evidence that miR-375 acts as a suppressor of metastasis in gastric cancer by targeting RON, and might represent a new potential therapeutic target for gastric cancer. Full article
Figures

Open AccessArticle miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease
Int. J. Mol. Sci. 2016, 17(10), 1620; doi:10.3390/ijms17101620
Received: 3 August 2016 / Revised: 13 September 2016 / Accepted: 13 September 2016 / Published: 24 September 2016
PDF Full-text (1245 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Specific miRNA expression profiles have been shown to be associated with nonalcoholic fatty liver disease (NAFLD). We examined the correlation between the circulating levels and hepatic expression of miR122 and miR33a/b*, the key lipid metabolism-related gene expression and the clinicopathological factors of obese
[...] Read more.
Specific miRNA expression profiles have been shown to be associated with nonalcoholic fatty liver disease (NAFLD). We examined the correlation between the circulating levels and hepatic expression of miR122 and miR33a/b*, the key lipid metabolism-related gene expression and the clinicopathological factors of obese women with NAFLD. We measured miR122 and miR33a/b* expression in liver samples from 62 morbidly obese (MO), 30 moderately obese (ModO), and eight normal-weight controls. MiR122 and miR33a/b* expression was analyzed by qRT-PCR. Additionally, miR122 and miR33b* circulating levels were analyzed in 122 women. Hepatic miR33b* expression was increased in MO compared to ModO and controls, whereas miR122 expression was decreased in the MO group compared to ModO. In obese cohorts, miR33b* expression was increased in nonalcoholic steatohepatitis (NASH). Regarding circulating levels, MO patients with NASH showed higher miR122 levels than MO with simple steatosis (SS). These circulating levels are good predictors of histological features associated with disease severity. MO is associated with altered hepatic miRNA expression. In obese women, higher miR33b* liver expression is associated with NASH. Moreover, multiple correlations between miRNAs and the expression of genes related to lipid metabolism were found, that would suggest a miRNA-host gene circuit. Finally, miR122 circulating levels could be included in a panel of different biomarkers to improve accuracy in the non-invasive diagnosis of NASH. Full article
Figures

Open AccessArticle Long Noncoding RNA lncCAMTA1 Promotes Proliferation and Cancer Stem Cell-Like Properties of Liver Cancer by Inhibiting CAMTA1
Int. J. Mol. Sci. 2016, 17(10), 1617; doi:10.3390/ijms17101617
Received: 7 July 2016 / Revised: 3 September 2016 / Accepted: 5 September 2016 / Published: 23 September 2016
Cited by 1 | PDF Full-text (4057 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of liver malignancy, and it is characterized by poor prognosis because of cancer stem cell (CSC)-mediated high postsurgical recurrence rates. Thus, targeting CSCs, or HCC cells with CSC-like properties, is an effective strategy for HCC
[...] Read more.
Hepatocellular carcinoma (HCC) is the most common subtype of liver malignancy, and it is characterized by poor prognosis because of cancer stem cell (CSC)-mediated high postsurgical recurrence rates. Thus, targeting CSCs, or HCC cells with CSC-like properties, is an effective strategy for HCC therapy. Here, using long noncoding RNA (lncRNA) microarray analysis, we identified a novel lncRNA termed lncCAMTA1 that is increased in both liver CSCs and HCC. High lncCAMTA1 expression in HCC indicates poor clinical outcome. In vitro and in vivo functional experiments showed that overexpression of lncCAMTA1 promotes HCC cell proliferation, CSC-like properties, and tumorigenesis. Conversely, depletion of lncCAMTA1 inhibits HCC cell proliferation, CSC-like properties, and tumorigenesis. Mechanistically, we demonstrated that lncCAMTA1 physically associates with the calmodulin binding transcription activator 1 (CAMTA1) promoter, induces a repressive chromatin structure, and inhibits CAMTA1 transcription. Furthermore, CAMTA1 is required for the effects of lncCAMTA1 on HCC cell proliferation and CSC-like properties, and the expression of lncCAMTA1 and CAMTA1 is significantly negatively correlated in HCC tissues. Collectively, our study revealed the important roles and underlying molecular mechanisms of lncCAMTA1 on HCC, and suggested that lncCAMTA1 could be an effective prognostic factor and a potential therapeutic target for HCC. Full article
Figures

Figure 1

Open AccessCommentary A MicroRNA that Regulates TLR-Mediated Fibrosis
Int. J. Mol. Sci. 2016, 17(9), 1519; doi:10.3390/ijms17091519
Received: 3 August 2016 / Revised: 7 September 2016 / Accepted: 7 September 2016 / Published: 9 September 2016
PDF Full-text (146 KB) | HTML Full-text | XML Full-text
Abstract Hepatic damage can be caused by an array of factors which, if sustained, can lead to hepatic fibrosis.[...] Full article
Open AccessReview Current Status of Long Non-Coding RNAs in Human Breast Cancer
Int. J. Mol. Sci. 2016, 17(9), 1485; doi:10.3390/ijms17091485
Received: 27 July 2016 / Revised: 22 August 2016 / Accepted: 26 August 2016 / Published: 6 September 2016
PDF Full-text (275 KB) | HTML Full-text | XML Full-text
Abstract
Breast cancer represents a major health burden in Europe and North America, as recently published data report breast cancer as the second leading cause of cancer related death in women worldwide. Breast cancer is regarded as a highly heterogeneous disease in terms of
[...] Read more.
Breast cancer represents a major health burden in Europe and North America, as recently published data report breast cancer as the second leading cause of cancer related death in women worldwide. Breast cancer is regarded as a highly heterogeneous disease in terms of clinical course and biological behavior and can be divided into several molecular subtypes, with different prognosis and treatment responses. The discovery of numerous non-coding RNAs has dramatically changed our understanding of cell biology, especially the pathophysiology of cancer. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts >200 nucleotides in length. Several studies have demonstrated their role as key regulators of gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including breast cancer. lncRNAs are involved in cancer initiation, progression, and metastases. In this review, we summarize the recent literature to highlight the current status of this class of long non-coding lncRNAs in breast cancer. Full article
Open AccessArticle MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3
Int. J. Mol. Sci. 2016, 17(9), 1427; doi:10.3390/ijms17091427
Received: 22 July 2016 / Revised: 14 August 2016 / Accepted: 19 August 2016 / Published: 2 September 2016
PDF Full-text (8154 KB) | HTML Full-text | XML Full-text
Abstract
miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of
[...] Read more.
miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3′-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3′-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke. Full article
Figures

Open AccessArticle A Long Noncoding RNA ZEB1-AS1 Promotes Tumorigenesis and Predicts Poor Prognosis in Glioma
Int. J. Mol. Sci. 2016, 17(9), 1431; doi:10.3390/ijms17091431
Received: 7 July 2016 / Revised: 19 August 2016 / Accepted: 22 August 2016 / Published: 30 August 2016
PDF Full-text (6125 KB) | HTML Full-text | XML Full-text
Abstract
Emerging studies show that long noncoding RNAs (lncRNAs) have important roles in carcinogenesis. lncRNA ZEB1 antisense 1 (ZEB1-AS1) is a novel lncRNA, whose clinical significance, biological function, and underlying mechanism remains unclear in glioma. Here, we found that ZEB1-AS1 was highly expressed in
[...] Read more.
Emerging studies show that long noncoding RNAs (lncRNAs) have important roles in carcinogenesis. lncRNA ZEB1 antisense 1 (ZEB1-AS1) is a novel lncRNA, whose clinical significance, biological function, and underlying mechanism remains unclear in glioma. Here, we found that ZEB1-AS1 was highly expressed in glioma tissues, being closely related to clinical stage of glioma. Moreover, patients with high ZEB1-AS1 levels had poor prognoses, with the evidence provided by multivariate Cox regression analysis indicating that ZEB1-AS1 expression could serve as an independent prognostic factor in glioma patients. Functionally, silencing of ZEB1-AS1 could significantly inhibit cell proliferation, migration, and invasion, as well as promote apoptosis. Knockdown of ZEB1-AS1 significantly induced the G0/G1 phase arrest and correspondingly decreased the percentage of S phase cells. Further analysis indicated that ZEB1-AS1 could regulate the cell cycle by inhibiting the expression of G1/S transition key regulators, such as Cyclin D1 and CDK2. Furthermore, ZEB1-AS1 functioned as an important regulator of migration and invasion via activating epithelial to mesenchymal transition (EMT) through up-regulating the expression of ZEB1, MMP2, MMP9, N-cadherin, and Integrin-β1 as well as decreasing E-cadherin levels in the metastatic progression of glioma. Additionally, forced down-regulation of ZEB1-AS1 could dramatically promote apoptosis by increasing the expression level of Bax and reducing Bcl-2 expression in glioma. Taken together, our data suggest that ZEB1-AS1 may serve as a new prognostic biomarker and therapeutic target of glioma. Full article
Figures

Open AccessArticle MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression
Int. J. Mol. Sci. 2016, 17(9), 1377; doi:10.3390/ijms17091377
Received: 29 June 2016 / Revised: 12 August 2016 / Accepted: 16 August 2016 / Published: 23 August 2016
PDF Full-text (6891 KB) | HTML Full-text | XML Full-text
Abstract
Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the
[...] Read more.
Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process remained unclear. In this study, we observed divergent expression of miR-381 and histone deacetylase 4 (HDAC4), an enzyme that directly inhibits RUNX2 and MMP13 expression, during late-stage chondrogenesis of ATDC5 cells, as well as in prehypertrophic and hypertrophic chondrocytes during long bone development in E16.5 mouse embryos. We therefore investigated whether this miRNA regulates HDAC4 expression during chondrogenesis. Notably, overexpression of miR-381 inhibited HDAC4 expression but promoted RUNX2 expression. Moreover, transfection of SW1353 cells with an miR-381 mimic suppressed the activity of a reporter construct containing the 3′-untranslated region (3′-UTR) of HDAC4. Conversely, treatment with a miR-381 inhibitor yielded increased HDAC4 expression and decreased RUNX2 expression. Lastly, knockdown of HDAC4 expression resulted in increased RUNX2 and MMP13 expression in SW1353 cells. Collectively, our results indicate that miR-381 epigenetically regulates MMP13 and RUNX2 expression via targeting of HDAC4, thereby suggesting the possibilities of inhibiting miR-381 to control chondrocyte hypertrophy and cartilage degeneration. Full article
Figures

Open AccessArticle Plasma LncRNA-ATB, a Potential Biomarker for Diagnosis of Patients with Coal Workers’ Pneumoconiosis: A Case-Control Study
Int. J. Mol. Sci. 2016, 17(8), 1367; doi:10.3390/ijms17081367
Received: 23 June 2016 / Revised: 30 July 2016 / Accepted: 11 August 2016 / Published: 22 August 2016
PDF Full-text (726 KB) | HTML Full-text | XML Full-text
Abstract
LncRNA-ATB (lncRNA was activated by transforming growth factor-β) has been reported to be involved in specific physiological and pathological processes in human diseases, and could serve as biomarkers for cancers. However, the role of lncRNA-ATB in coal workers’ pneumoconiosis (CWP) is still unknown.
[...] Read more.
LncRNA-ATB (lncRNA was activated by transforming growth factor-β) has been reported to be involved in specific physiological and pathological processes in human diseases, and could serve as biomarkers for cancers. However, the role of lncRNA-ATB in coal workers’ pneumoconiosis (CWP) is still unknown. This study aimed to investigate the association between lncRNA-ATB and CWP. Quantitative real-time polymerase chain reaction was performed to detect plasma lncRNA-ATB expression in 137 CWP patients, 72 healthy coal miners and 168 healthy controls. LncRNA-ATB was significantly upregulated in CWP (p < 0.05). Compared with the healthy controls and healthy coal miners, the odds ratios (ORs) (95% confidence interval (CI)) for CWP were 2.57 (1.52–4.33) and 2.17 (1.04–4.53), respectively. LncRNA-ATB was positively associated with transforming growth factor-β1 (TGF-β1) (r = 0.30, p = 0.003) and negative correlated with vital capacity (VC) (r = −0.18, p = 0.033) and forced vital capacity (FVC) (r = −0.18, p = 0.046) in CWP patients. Compared with healthy controls, the area under the curve (AUC) was 0.84, resulting in a 71.17% sensitivity and 88.14% specificity. When compared with healthy coal miners, the AUC was 0.83, the sensitivity and specificity were 70.07% and 86.36%, respectively. LncRNA-ATB expression is commonly increased in CWP and significantly correlates with the TGF-β1 in CWP patients. Furthermore, elevated lncRNA-ATB was associated with CWP risk and may serve as a potential biomarker for CWP. Full article
Figures

Open AccessCommunication SMA Human iPSC-Derived Motor Neurons Show Perturbed Differentiation and Reduced miR-335-5p Expression
Int. J. Mol. Sci. 2016, 17(8), 1231; doi:10.3390/ijms17081231
Received: 24 June 2016 / Revised: 18 July 2016 / Accepted: 18 July 2016 / Published: 30 July 2016
PDF Full-text (3838 KB) | HTML Full-text | XML Full-text
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by mutations in the Survival Motor Neuron 1 gene, resulting in very low levels of functional Survival of Motor Neuron (SMN) protein. SMA human induced Pluripotent Stem Cells (hiPSCs) represent a useful and valid
[...] Read more.
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by mutations in the Survival Motor Neuron 1 gene, resulting in very low levels of functional Survival of Motor Neuron (SMN) protein. SMA human induced Pluripotent Stem Cells (hiPSCs) represent a useful and valid model for the study of the disorder, as they provide in vitro the target cells. MicroRNAs (miRNAs) are often reported as playing a key role in regulating neuronal differentiation and fate specification. In this study SMA hiPSCs have been differentiated towards early motor neurons and their molecular and immunocytochemical profile were compared to those of wild type cells. Cell cycle proliferation was also evaluated by fluorescence-activated cell sorting (FACS). SMA hiPSCs showed an increased proliferation rate and also higher levels of stem cell markers. Moreover; when differentiated towards early motor neurons they expressed lower levels of NCAM and MN specific markers. The expression of miR-335-5p; already identified to control self-renewal or differentiation of mouse embryonic stem cells (mESCs); resulted to be reduced during the early steps of differentiation of SMA hiPSCs compared to wild type cells. These results suggest that we should speculate a role of this miRNA both in stemness characteristic and in differentiation efficiency of these cells. Full article
Figures

Figure 1

Open AccessArticle MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways
Int. J. Mol. Sci. 2016, 17(7), 1076; doi:10.3390/ijms17071076
Received: 30 May 2016 / Revised: 20 June 2016 / Accepted: 28 June 2016 / Published: 7 July 2016
Cited by 1 | PDF Full-text (4516 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this
[...] Read more.
Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. Full article
Figures

Open AccessArticle miR-218 Involvement in Cardiomyocyte Hypertrophy Is Likely through Targeting REST
Int. J. Mol. Sci. 2016, 17(6), 848; doi:10.3390/ijms17060848
Received: 23 April 2016 / Revised: 10 May 2016 / Accepted: 25 May 2016 / Published: 31 May 2016
PDF Full-text (5332 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with significant risks of heart failure. However, many microRNAs are still not recognized for their functions in pathophysiological processes. In this study, we evaluated effects of miR-218 in cardiomyocyte
[...] Read more.
MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with significant risks of heart failure. However, many microRNAs are still not recognized for their functions in pathophysiological processes. In this study, we evaluated effects of miR-218 in cardiomyocyte hypertrophy using both in vitro and in vivo models. We found that miR-218 was evidently downregulated in a transverse aortic constriction (TAC) mouse model. Overexpression of miR-218 is sufficient to reduce hypertrophy, whereas the suppression of miR-218 aggravates hypertrophy in primary cardiomyocytes induced by isoprenaline (ISO). In addition, we identified RE1-silencing transcription factor (REST) as a novel target of miR-218; it negatively regulated the expression of REST in hypertrophic cardiomyocytes and the TAC model. These results showed that miR-218 plays a crucial role in cardiomyocyte hypertrophy, likely via targeting REST, suggesting a potential candidate target for interfering hypertrophy. Full article
Figures

Open AccessReview Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures
Int. J. Mol. Sci. 2016, 17(5), 702; doi:10.3390/ijms17050702
Received: 15 March 2016 / Revised: 28 April 2016 / Accepted: 4 May 2016 / Published: 17 May 2016
PDF Full-text (3451 KB) | HTML Full-text | XML Full-text
Abstract
Although thousands of long non-coding RNAs (lncRNAs) have been discovered in eukaryotes, very few molecular mechanisms have been characterized due to an insufficient understanding of lncRNA structure. Therefore, investigations of lncRNA structure and subsequent elucidation of the regulatory mechanisms are urgently needed. However,
[...] Read more.
Although thousands of long non-coding RNAs (lncRNAs) have been discovered in eukaryotes, very few molecular mechanisms have been characterized due to an insufficient understanding of lncRNA structure. Therefore, investigations of lncRNA structure and subsequent elucidation of the regulatory mechanisms are urgently needed. However, since lncRNA are high molecular weight molecules, which makes their crystallization difficult, obtaining information about their structure is extremely challenging, and the structures of only several lncRNAs have been determined so far. Here, we review the structure–function relationships of the widely studied lncRNAs found in the animal and plant kingdoms, focusing on the principles and applications of both in vitro and in vivo technologies for the study of RNA structures, including dimethyl sulfate-sequencing (DMS-seq), selective 2′-hydroxyl acylation analyzed by primer extension-sequencing (SHAPE-seq), parallel analysis of RNA structure (PARS), and fragmentation sequencing (FragSeq). The aim of this review is to provide a better understanding of lncRNA biological functions by studying them at the structural level. Full article
Figures

Open AccessReview Expression and Function of miR-155 in Diseases of the Gastrointestinal Tract
Int. J. Mol. Sci. 2016, 17(5), 709; doi:10.3390/ijms17050709
Received: 12 April 2016 / Revised: 25 April 2016 / Accepted: 3 May 2016 / Published: 11 May 2016
PDF Full-text (400 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs) are a type of small noncoding RNA that can regulate the expression of target genes under physiological and pathophysiological conditions. miR-155 is a multifunctional miRNA with inflammation-related and oncogenic roles. In particular, the dysregulation of miR-155 has been strongly implicated in
[...] Read more.
MicroRNAs (miRNAs) are a type of small noncoding RNA that can regulate the expression of target genes under physiological and pathophysiological conditions. miR-155 is a multifunctional miRNA with inflammation-related and oncogenic roles. In particular, the dysregulation of miR-155 has been strongly implicated in Helicobacter pylori-related gastric disease, inflammatory bowel disease, and colorectal cancer in addition to being involved in molecular changes of important targets and signaling pathways. This review focuses on the expression and function of miR-155 during inflammation and carcinogenesis and its potential use as an effective therapeutic target for certain gastrointestinal diseases. Full article
Figures

Open AccessArticle Mmu-miR-1894-3p Inhibits Cell Proliferation and Migration of Breast Cancer Cells by Targeting Trim46
Int. J. Mol. Sci. 2016, 17(4), 609; doi:10.3390/ijms17040609
Received: 18 March 2016 / Revised: 5 April 2016 / Accepted: 14 April 2016 / Published: 22 April 2016
PDF Full-text (5758 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Breast cancer is the second leading cause of cancer death in women and the presence of metastasis significantly decreases survival. MicroRNAs are involved in tumor progression and the metastatic spreading of breast cancer. Here, we reported that a microRNA, mmu-miR-1894, significantly decreased the
[...] Read more.
Breast cancer is the second leading cause of cancer death in women and the presence of metastasis significantly decreases survival. MicroRNAs are involved in tumor progression and the metastatic spreading of breast cancer. Here, we reported that a microRNA, mmu-miR-1894, significantly decreased the lung metastasis of 4TO7 mouse breast cancer cells by 86.7% in mouse models. Mmu-miR-1894-3p was the functional mature form of miR-1894 and significantly decreased the lung metastasis of 4TO7 cells by 90.8% in mouse models. A dual-luciferase reporter assay indicated that mmu-miR-1894-3p directly targeted the tripartite motif containing 46 (Trim46) 3′-untranslated region (UTR) and downregulated the expression of Trim46 in 4TO7 cells. Consistent with the effect of mmu-miR-1894-3p, knockdown of Trim46 inhibited the experimental lung metastasis of 4TO7 cells. Moreover, knockdown of human Trim46 also prohibited the cell proliferation, migration and wound healing of MBA-MD-231 human breast cancer cells. These results suggested that the effect of knockdown of Trim46 alone was sufficient to recapitulate the effect of mmu-miR-1894 on the metastasis of the breast cancer cells in mouse and that Trim46 was involved in the proliferation and migration of mouse and human breast cancer cells. Full article
Figures

Open AccessEditorial Non-Coding RNAs in Cancer: An Interview with Dr. Martin Pichler
Int. J. Mol. Sci. 2016, 17(4), 605; doi:10.3390/ijms17040605
Received: 12 April 2016 / Revised: 20 April 2016 / Accepted: 20 April 2016 / Published: 21 April 2016
PDF Full-text (417 KB) | HTML Full-text | XML Full-text
Abstract In this issue, we are pleased and honored to have an interview with Professor Martin Pichler, who is the Collection Editor for the International Journal of Molecular Sciences Topical Collection of “Regulation by Non-Coding RNAs” [1].[...] Full article
Open AccessReview Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma
Int. J. Mol. Sci. 2016, 17(4), 573; doi:10.3390/ijms17040573
Received: 22 February 2016 / Revised: 8 April 2016 / Accepted: 12 April 2016 / Published: 15 April 2016
Cited by 2 | PDF Full-text (705 KB) | HTML Full-text | XML Full-text
Abstract
Renal cell carcinoma (RCC) represents a deadly disease with rising mortality despite intensive therapeutic efforts. It comprises several subtypes in terms of distinct histopathological features and different clinical presentations. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the genome which vary in expression
[...] Read more.
Renal cell carcinoma (RCC) represents a deadly disease with rising mortality despite intensive therapeutic efforts. It comprises several subtypes in terms of distinct histopathological features and different clinical presentations. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the genome which vary in expression levels and length and perform diverse functions. They are involved in the inititation, evolution and progression of primary cancer, as well as in the development and spread of metastases. Recently, several lncRNAs were described in RCC. This review emphasises the rising importance of lncRNAs in RCC. Moreover, it provides an outlook on their therapeutic potential in the future. Full article
Open AccessArticle Inhibition of IFN-γ-Induced Nitric Oxide Dependent Antimycobacterial Activity by miR-155 and C/EBPβ
Int. J. Mol. Sci. 2016, 17(4), 535; doi:10.3390/ijms17040535
Received: 7 March 2016 / Revised: 25 March 2016 / Accepted: 1 April 2016 / Published: 8 April 2016
Cited by 3 | PDF Full-text (4949 KB) | HTML Full-text | XML Full-text
Abstract
miR-155 (microRNA-155) is an important non-coding RNA in regulating host crucial biological regulators. However, its regulatory function in mycobacterium infection remains unclear. Our study demonstrates that miR-155 expression is significantly increased in macrophages after Mycobacterium marinum (M.m) infection. Transfection with anti-miR-155
[...] Read more.
miR-155 (microRNA-155) is an important non-coding RNA in regulating host crucial biological regulators. However, its regulatory function in mycobacterium infection remains unclear. Our study demonstrates that miR-155 expression is significantly increased in macrophages after Mycobacterium marinum (M.m) infection. Transfection with anti-miR-155 enhances nitric oxide (NO) synthesis and decreases the mycobacterium burden, and vice versa, in interferon γ (IFN-γ) activated macrophages. More importantly, miR-155 can directly bind to the 3′UTR of CCAAT/enhancer binding protein β (C/EBPβ), a positive transcriptional regulator of nitric oxide synthase (NOS2), and regulate C/EBPβ expression negatively. Knockdown of C/EBPβ inhibit the production of nitric oxide synthase and promoted mycobacterium survival. Collectively, these data suggest that M.m-induced upregulation of miR-155 downregulated the expression of C/EBPβ, thus decreasing the production of NO and promoting mycobacterium survival, which may provide an insight into the function of miRNA in subverting the host innate immune response by using mycobacterium for its own profit. Understanding how miRNAs partly regulate microbicidal mechanisms may represent an attractive way to control tuberculosis infectious. Full article
Figures

Open AccessReview Novel Insights into the Role of Long Noncoding RNA in Ocular Diseases
Int. J. Mol. Sci. 2016, 17(4), 478; doi:10.3390/ijms17040478
Received: 11 February 2016 / Revised: 18 March 2016 / Accepted: 18 March 2016 / Published: 31 March 2016
Cited by 1 | PDF Full-text (217 KB) | HTML Full-text | XML Full-text
Abstract
Recent advances have suggested that long noncoding RNAs (lncRNAs) are differentially expressed in ocular tissues and play a critical role in the pathogenesis of different types of eye diseases. Here, we summarize the functions and mechanisms of known aberrantly-expressed lncRNAs and present a
[...] Read more.
Recent advances have suggested that long noncoding RNAs (lncRNAs) are differentially expressed in ocular tissues and play a critical role in the pathogenesis of different types of eye diseases. Here, we summarize the functions and mechanisms of known aberrantly-expressed lncRNAs and present a brief overview of relevant reports about lncRNAs in such ocular diseases as glaucoma, proliferative vitreoretinopathy (PVR), diabeticretinopathy (DR), and ocular tumors. We intend to highlight comprehensive studies that provide detailed data about the mechanisms of lncRNAs, their applications as diagnostic or prognostic biomarkers, and their potential therapeutic targets. Although our understanding of lncRNAs is still in its infancy, these examples may provide helpful insights into the methods by which lncRNAs interfere with ocular diseases. Full article
Figures

Open AccessReview Crosstalk between Long Noncoding RNAs and MicroRNAs in Health and Disease
Int. J. Mol. Sci. 2016, 17(3), 356; doi:10.3390/ijms17030356
Received: 2 February 2016 / Revised: 29 February 2016 / Accepted: 2 March 2016 / Published: 11 March 2016
Cited by 4 | PDF Full-text (1118 KB) | HTML Full-text | XML Full-text
Abstract
Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles
[...] Read more.
Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles in regulating many cellular processes which are often implicated in health and disease. For example, ncRNAs are aberrantly expressed in cancers, heart diseases, and many other diseases. LncRNAs and miRs are therefore novel and promising targets to be developed into biomarkers for diagnosis and prognosis as well as treatment options. The interaction between lncRNAs and miRs as well as its pathophysiological significance have recently been reported. Mechanistically, it is believed that lncRNAs exert “sponge-like” effects on various miRs, which subsequently inhibits miR-mediated functions. This crosstalk between two types of ncRNAs frequently contributes to the pathogenesis of the disease. In this review, we provide a summary of the recent studies highlighting the interaction between these ncRNAs and the effects of this interaction on disease pathogenesis and regulation. Full article
Figures

Open AccessArticle miR-16-5p Is a Stably-Expressed Housekeeping MicroRNA in Breast Cancer Tissues from Primary Tumors and from Metastatic Sites
Int. J. Mol. Sci. 2016, 17(2), 156; doi:10.3390/ijms17020156
Received: 30 November 2015 / Revised: 20 January 2016 / Accepted: 21 January 2016 / Published: 26 January 2016
Cited by 2 | PDF Full-text (552 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA
[...] Read more.
For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan® Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)® microarrays from Agilent® was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort. Full article
Figures

Open AccessReview Structure Prediction: New Insights into Decrypting Long Noncoding RNAs
Int. J. Mol. Sci. 2016, 17(1), 132; doi:10.3390/ijms17010132
Received: 10 October 2015 / Revised: 18 December 2015 / Accepted: 12 January 2016 / Published: 21 January 2016
Cited by 3 | PDF Full-text (818 KB) | HTML Full-text | XML Full-text
Abstract
Long noncoding RNAs (lncRNAs), which form a diverse class of RNAs, remain the least understood type of noncoding RNAs in terms of their nature and identification. Emerging evidence has revealed that a small number of newly discovered lncRNAs perform important and complex biological
[...] Read more.
Long noncoding RNAs (lncRNAs), which form a diverse class of RNAs, remain the least understood type of noncoding RNAs in terms of their nature and identification. Emerging evidence has revealed that a small number of newly discovered lncRNAs perform important and complex biological functions such as dosage compensation, chromatin regulation, genomic imprinting, and nuclear organization. However, understanding the wide range of functions of lncRNAs related to various processes of cellular networks remains a great experimental challenge. Structural versatility is critical for RNAs to perform various functions and provides new insights into probing the functions of lncRNAs. In recent years, the computational method of RNA structure prediction has been developed to analyze the structure of lncRNAs. This novel methodology has provided basic but indispensable information for the rapid, large-scale and in-depth research of lncRNAs. This review focuses on mainstream RNA structure prediction methods at the secondary and tertiary levels to offer an additional approach to investigating the functions of lncRNAs. Full article
Figures

Open AccessArticle MiRNA-Target Interaction Reveals Cell-Specific Post-Transcriptional Regulation in Mammalian Cell Lines
Int. J. Mol. Sci. 2016, 17(1), 72; doi:10.3390/ijms17010072
Received: 20 November 2015 / Revised: 21 December 2015 / Accepted: 31 December 2015 / Published: 8 January 2016
PDF Full-text (1368 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous
[...] Read more.
MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous transcriptome profiling studies, we observed that post-transcriptional regulation can differ substantially depending on the cell in context. Here we examined mechanistic differences in the regulation of a let-7a targeted (wild type) or resistant (mutant) engineered renilla transcript across various mammalian cell lines of diverse origin. Dual luciferase assays show that compared to mutant (mut), the reporter gene containing wild type (wt) let-7a binding sites was efficiently suppressed upon transfection in various cell lines. Importantly, the strength of miRNA regulation varied across the cell lines. Total RNA analysis demonstrates that wt renilla mRNA was expressed to similar or higher levels compared to mut suggesting that translation repression is a predominant mode of miRNA regulation. Nonetheless, transcript degradation was observed in some cell lines. Ago-2 immunoprecipitation show that miRNA repressed renilla mRNA are associated with functional mi-RISC (miRNA-RNA induced silencing complex). Given the immense potential of miRNA as a therapeutic option, these findings highlight the necessity to thoroughly examine the mode of mRNA regulation in order to achieve the beneficial effects in targeting cells. Full article
Figures

2015

Jump to: 2016, 2014

Open AccessArticle Novel Insights into Guide RNA 5′-Nucleoside/Tide Binding by Human Argonaute 2
Int. J. Mol. Sci. 2016, 17(1), 22; doi:10.3390/ijms17010022
Received: 3 November 2015 / Revised: 14 December 2015 / Accepted: 16 December 2015 / Published: 24 December 2015
PDF Full-text (3405 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The human Argonaute 2 (hAgo2) protein is a key player of RNA interference (RNAi). Upon complex formation with small non-coding RNAs, the protein initially interacts with the 5′-end of a given guide RNA through multiple interactions within the MID domain. This interaction has
[...] Read more.
The human Argonaute 2 (hAgo2) protein is a key player of RNA interference (RNAi). Upon complex formation with small non-coding RNAs, the protein initially interacts with the 5′-end of a given guide RNA through multiple interactions within the MID domain. This interaction has been reported to show a strong bias for U and A over C and G at the 5′-position. Performing molecular dynamics simulations of binary hAgo2/OH–guide–RNA complexes, we show that hAgo2 is a highly flexible protein capable of binding to guide strands with all four possible 5′-bases. Especially, in the case of C and G this is associated with rather large individual conformational rearrangements affecting the MID, PAZ and even the N-terminal domains to different degrees. Moreover, a 5′-G induces domain motions in the protein, which trigger a previously unreported interaction between the 5′-base and the L2 linker domain. Combining our in silico analyses with biochemical studies of recombinant hAgo2, we find that, contrary to previous observations, hAgo2 is capable of functionally accommodating guide strands regardless of the 5′-base. Full article
Figures

Open AccessArticle MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma
Int. J. Mol. Sci. 2015, 16(12), 30204-30222; doi:10.3390/ijms161226230
Received: 12 November 2015 / Revised: 8 December 2015 / Accepted: 9 December 2015 / Published: 18 December 2015
PDF Full-text (4753 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and
[...] Read more.
MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method “miRlastic”, which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of miRNAs that were predicted to mediate HPV-associated dysregulation in HNSCC. Our novel approach was able to characterize distinct pathway regulations from matched miRNA and mRNA data. An R package of miRlastic was made available through: http://icb.helmholtz-muenchen.de/mirlastic. Full article
Figures

Open AccessReview The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens
Int. J. Mol. Sci. 2015, 16(12), 29797-29814; doi:10.3390/ijms161226194
Received: 16 November 2015 / Revised: 1 December 2015 / Accepted: 4 December 2015 / Published: 14 December 2015
PDF Full-text (2322 KB) | HTML Full-text | XML Full-text
Abstract
The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act
[...] Read more.
The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described. Full article
Open AccessReview Tumor-Associated CSF MicroRNAs for the Prediction and Evaluation of CNS Malignancies
Int. J. Mol. Sci. 2015, 16(12), 29103-29119; doi:10.3390/ijms161226150
Received: 3 November 2015 / Revised: 26 November 2015 / Accepted: 27 November 2015 / Published: 7 December 2015
Cited by 1 | PDF Full-text (871 KB) | HTML Full-text | XML Full-text
Abstract
Cerebrospinal fluid (CSF) is a readily reachable body fluid that is reflective of the underlying pathological state of the central nervous system (CNS). Hence it has been targeted for biomarker discovery for a variety of neurological disorders. CSF is also the major route
[...] Read more.
Cerebrospinal fluid (CSF) is a readily reachable body fluid that is reflective of the underlying pathological state of the central nervous system (CNS). Hence it has been targeted for biomarker discovery for a variety of neurological disorders. CSF is also the major route for seeding metastases of CNS malignancies and its analysis could be informative for diagnosis and risk stratification of brain cancers. Recently, modern high-throughput, microRNAs (miRNAs) measuring technology has enabled sensitive detection of distinct miRNAs that are bio-chemicallystable in the CSF and can distinguish between different types of CNS cancers. Owing to the fact that a CSF specimen can be obtained with relative ease, analysis of CSF miRNAs could be a promising contribution to clinical practice. In this review, we examine the current scientific knowledge on tumor associated CSF miRNAs that could guide diagnosis of different brain cancer types, or could be helpful in predicting disease progression and therapy response. Finally, we highlight their potential applications clinically as biomarkers and discuss limitations. Full article
Figures

Open AccessReview Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism
Int. J. Mol. Sci. 2015, 16(12), 28943-28978; doi:10.3390/ijms161226138
Received: 5 October 2015 / Revised: 17 November 2015 / Accepted: 26 November 2015 / Published: 4 December 2015
Cited by 2 | PDF Full-text (1755 KB) | HTML Full-text | XML Full-text
Abstract
Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of
[...] Read more.
Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed. Full article
Open AccessReview MicroRNAs: Clinical Relevance in Colorectal Cancer
Int. J. Mol. Sci. 2015, 16(12), 28063-28076; doi:10.3390/ijms161226080
Received: 3 September 2015 / Revised: 27 October 2015 / Accepted: 13 November 2015 / Published: 25 November 2015
Cited by 12 | PDF Full-text (377 KB) | HTML Full-text | XML Full-text
Abstract
Colorectal cancer is one of the most common cancer diagnoses and causes of mortality worldwide. MicroRNAs are a class of small, non-coding regulatory RNAs that have shown strong associations with colorectal cancer. Through the repression of target messenger RNAs, microRNAs modulate many cellular
[...] Read more.
Colorectal cancer is one of the most common cancer diagnoses and causes of mortality worldwide. MicroRNAs are a class of small, non-coding regulatory RNAs that have shown strong associations with colorectal cancer. Through the repression of target messenger RNAs, microRNAs modulate many cellular pathways, such as those involved in cell proliferation, apoptosis, and differentiation. The utilization of microRNAs has shown significant promise in the diagnosis and prognosis of colorectal cancer, owing to their unique expression profile associations with cancer types and malignancies. Moreover, microRNA therapeutics with mimics or antagonists show great promise in preclinical studies, which encourages further development of their clinical use for colorectal cancer patients. The unique ability of microRNAs to affect multiple downstream pathways represents a novel approach for cancer therapy. Although still early in its development, we believe that microRNAs can be used in the near future as biomarkers and therapeutic targets for colorectal cancer. Full article
Open AccessArticle Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice
Int. J. Mol. Sci. 2015, 16(11), 27058-27071; doi:10.3390/ijms161126001
Received: 29 September 2015 / Revised: 29 October 2015 / Accepted: 2 November 2015 / Published: 12 November 2015
Cited by 3 | PDF Full-text (1221 KB) | HTML Full-text | XML Full-text
Abstract
Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of
[...] Read more.
Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Linc-Kit+ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs. Full article
Figures

Open AccessReview Long Non-Coding RNAs in Endometrial Carcinoma
Int. J. Mol. Sci. 2015, 16(11), 26463-26472; doi:10.3390/ijms161125962
Received: 7 September 2015 / Revised: 22 October 2015 / Accepted: 26 October 2015 / Published: 4 November 2015
Cited by 7 | PDF Full-text (496 KB) | HTML Full-text | XML Full-text
Abstract
Endometrial carcinoma (EC), the second most common form of gynaecological malignancy, can be divided into two distinct sub-types: Type I tumours arise from hyperplastic endometrium and typically effect women around the time of menopause, whereas type II tumours arise in postmenopausal women from
[...] Read more.
Endometrial carcinoma (EC), the second most common form of gynaecological malignancy, can be divided into two distinct sub-types: Type I tumours arise from hyperplastic endometrium and typically effect women around the time of menopause, whereas type II tumours arise in postmenopausal women from atrophic endometrium. Long non-coding RNAs (lncRNAs) are a novel class of non-protein coding molecules that have recently been implicated in the pathogenesis of many types of cancer including gynaecological tumours. Although they play critical physiological roles in cellular metabolism, their expression and function are deregulated in EC compared with paired normal tissue, indicating that they may also participate in tumour initiation and progression. For instance, the lncRNA MALAT-1 is down-regulated in EC samples compared to normal or hyperplastic endometrium, whereas the lncRNA OVAL is down-regulated in type II disease but up-regulated in type I disease. Other notatble lncRNAs such as HOTAIR, H19 and SRA become up-regulated with increasing EC tumour grade and other features associated with poor prognosis. In the current review, we will examine the growing body of evidence linking deregulated lncRNAs with specific biological functions of tumour cells in EC, we will highlight associations between lncRNAs and the molecular pathways implicated in EC tumourigenesis and we will identify critical knowledge gaps that remain to be addressed. Full article
Open AccessReview The Role of MicroRNAs as Predictors of Response to Tamoxifen Treatment in Breast Cancer Patients
Int. J. Mol. Sci. 2015, 16(10), 24243-24275; doi:10.3390/ijms161024243
Received: 8 September 2015 / Revised: 28 September 2015 / Accepted: 30 September 2015 / Published: 14 October 2015
Cited by 6 | PDF Full-text (2752 KB) | HTML Full-text | XML Full-text
Abstract
Endocrine therapy is a key treatment strategy to control or eradicate hormone-responsive breast cancer. However, resistance to endocrine therapy leads to breast cancer relapse. The recent extension of adjuvant tamoxifen treatment up to 10 years actualizes the need for identifying biological markers that
[...] Read more.
Endocrine therapy is a key treatment strategy to control or eradicate hormone-responsive breast cancer. However, resistance to endocrine therapy leads to breast cancer relapse. The recent extension of adjuvant tamoxifen treatment up to 10 years actualizes the need for identifying biological markers that may be used to monitor predictors of treatment response. MicroRNAs are promising biomarkers that may fill the gap between preclinical knowledge and clinical observations regarding endocrine resistance. MicroRNAs regulate gene expression by posttranscriptional repression or degradation of mRNA, most often leading to gene silencing. MicroRNAs have been identified directly in the primary tumor, but also in the circulation of breast cancer patients. The few available studies investigating microRNA in patients suggest that seven microRNAs (miR-10a, miR-26, miR-30c, miR-126a, miR-210, miR-342 and miR-519a) play a role in tamoxifen resistance. Ingenuity Pathway Analysis (IPA) reveals that these seven microRNAs interact more readily with estrogen receptor (ER)-independent pathways than ER-related signaling pathways. Some of these pathways are targetable (e.g., PIK3CA), suggesting that microRNAs as biomarkers of endocrine resistance may have clinical value. Validation of the role of these candidate microRNAs in large prospective studies is warranted. Full article
Figures

Open AccessReview Long Non-Coding RNAs as Master Regulators in Cardiovascular Diseases
Int. J. Mol. Sci. 2015, 16(10), 23651-23667; doi:10.3390/ijms161023651
Received: 25 August 2015 / Revised: 21 September 2015 / Accepted: 28 September 2015 / Published: 5 October 2015
Cited by 12 | PDF Full-text (1506 KB) | HTML Full-text | XML Full-text
Abstract
Cardiovascular disease is the leading cause of death in the United States, accounting for nearly one in every seven deaths. Over the last decade, various targeted therapeutics have been introduced, but there has been no corresponding improvement in patient survival. Since the mortality
[...] Read more.
Cardiovascular disease is the leading cause of death in the United States, accounting for nearly one in every seven deaths. Over the last decade, various targeted therapeutics have been introduced, but there has been no corresponding improvement in patient survival. Since the mortality rate of cardiovascular disease has not been significantly decreased, efforts have been made to understand the link between heart disease and novel therapeutic targets such as non-coding RNAs. Among multiple non-coding RNAs, long non-coding RNA (lncRNA) has emerged as a novel therapeutic in cardiovascular medicine. LncRNAs are endogenous RNAs that contain over 200 nucleotides and regulate gene expression. Recent studies suggest critical roles of lncRNAs in modulating the initiation and progression of cardiovascular diseases. For example, aberrant lncRNA expression has been associated with the pathogenesis of ischemic heart failure. In this article, we present a synopsis of recent discoveries that link the roles and molecular interactions of lncRNAs to cardiovascular diseases. Moreover, we describe the prevalence of circulating lncRNAs and assess their potential utilities as biomarkers for diagnosis and prognosis of heart disease. Full article
Figures

Open AccessArticle A Large-Scale Analysis of the Relationship of Synonymous SNPs Changing MicroRNA Regulation with Functionality and Disease
Int. J. Mol. Sci. 2015, 16(10), 23545-23555; doi:10.3390/ijms161023545
Received: 10 September 2015 / Revised: 23 September 2015 / Accepted: 25 September 2015 / Published: 30 September 2015
Cited by 1 | PDF Full-text (1019 KB) | HTML Full-text | XML Full-text
Abstract
Historically, owing to not changing amino acid composition of protein sequences, synonymous mutations are commonly assumed to be neutral during evolution and therefore have no effect on the phenotype and disease. Here, based on observations from large-scale analysis of genomic data, we predicted
[...] Read more.
Historically, owing to not changing amino acid composition of protein sequences, synonymous mutations are commonly assumed to be neutral during evolution and therefore have no effect on the phenotype and disease. Here, based on observations from large-scale analysis of genomic data, we predicted the putative synonymous SNPs that could result in functional consequences and disease risk through changing the microRNA-mediated gene regulation. We found that nearly half of the synonymous SNPs could affect protein expression by changing microRNA regulation in human genome and these SNPs significantly prefer to be associated with human diseases and traits. The synonymous SNPs changing microRNA-mediated gene regulation tend to be more under recent positive selection, prefer to affect gene expression, and implicate in human disease. We conclude that the miRNA-mediated regulation changes could be a potential mechanism for the contributions of synonymous SNPs to protein functions and disease risks. Full article
Figures

Open AccessArticle Combination of MiR-378 and MiR-210 Serum Levels Enables Sensitive Detection of Renal Cell Carcinoma
Int. J. Mol. Sci. 2015, 16(10), 23382-23389; doi:10.3390/ijms161023382
Received: 22 August 2015 / Revised: 11 September 2015 / Accepted: 23 September 2015 / Published: 29 September 2015
Cited by 6 | PDF Full-text (1219 KB) | HTML Full-text | XML Full-text
Abstract
Serum microRNAs are emerging as a clinically useful tool for early and non-invasive detection of various cancer types including renal cell carcinoma (RCC). Based on our previous results, we performed the study to analyze circulating serum miR-378 and miR-210 in patients with various
[...] Read more.
Serum microRNAs are emerging as a clinically useful tool for early and non-invasive detection of various cancer types including renal cell carcinoma (RCC). Based on our previous results, we performed the study to analyze circulating serum miR-378 and miR-210 in patients with various histological subtypes of RCC. RNA was purified from blood serum samples of 195 RCC patients and 100 healthy controls. The levels of miR-378 and miR-210 in serum were determined absolutely using quantitative real-time PCR. Pre- and postoperative levels of both microRNAs were compared in 20 RCC patients. Significantly increased serum levels of both miR-378 and miR-210 enabled to clearly distinguish RCC patients and healthy controls with 80% sensitivity and 78% specificity if analyzed in combination (p < 0.0001), and their levels significantly decreased in the time period of three months after radical nephrectomy (p < 0.0001). Increased level of miR-378 positively correlates with disease-free survival (p = 0.036) and clinical stage (p = 0.0476). The analysis of serum miR-378 and miR-210 proved their potential to serve as powerful non-invasive diagnostic and prognostic biomarkers in RCC. Full article
Open AccessReview Regulatory Roles of Non-Coding RNAs in Colorectal Cancer
Int. J. Mol. Sci. 2015, 16(8), 19886-19919; doi:10.3390/ijms160819886
Received: 16 July 2015 / Revised: 16 August 2015 / Accepted: 17 August 2015 / Published: 21 August 2015
Cited by 9 | PDF Full-text (1310 KB) | HTML Full-text | XML Full-text
Abstract
Non-coding RNAs (ncRNAs) have recently gained attention because of their involvement in different biological processes. An increasing number of studies have demonstrated that mutations or abnormal expression of ncRNAs are closely associated with various diseases including cancer. The present review is a comprehensive
[...] Read more.
Non-coding RNAs (ncRNAs) have recently gained attention because of their involvement in different biological processes. An increasing number of studies have demonstrated that mutations or abnormal expression of ncRNAs are closely associated with various diseases including cancer. The present review is a comprehensive examination of the aberrant regulation of ncRNAs in colorectal cancer (CRC) and a summary of the current findings on ncRNAs, including long ncRNAs, microRNAs, small interfering RNAs, small nucleolar RNAs, small nuclear RNAs, Piwi-interacting RNAs, and circular RNAs. These ncRNAs might become novel biomarkers and targets as well as potential therapeutic tools for the treatment of CRC in the near future and this review may provide important clues for further research on CRC and for the selection of effective therapeutic targets. Full article
Figures

Open AccessReview LincRNA-p21: Implications in Human Diseases
Int. J. Mol. Sci. 2015, 16(8), 18732-18740; doi:10.3390/ijms160818732
Received: 4 July 2015 / Revised: 4 July 2015 / Accepted: 4 August 2015 / Published: 11 August 2015
Cited by 8 | PDF Full-text (979 KB) | HTML Full-text | XML Full-text
Abstract
Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these
[...] Read more.
Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases. Full article
Figures

Open AccessArticle miR-199a and miR-497 Are Associated with Better Overall Survival due to Increased Chemosensitivity in Diffuse Large B-Cell Lymphoma Patients
Int. J. Mol. Sci. 2015, 16(8), 18077-18095; doi:10.3390/ijms160818077
Received: 12 July 2015 / Revised: 28 July 2015 / Accepted: 30 July 2015 / Published: 5 August 2015
Cited by 9 | PDF Full-text (1350 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific
[...] Read more.
Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific miRNAs has been identified to correlate with tumor prognosis. For miRNA expression analysis real-time PCR on 81 samples was performed, including 63 diffuse large B-cell lymphoma (DLBCL, 15 of germinal center B-cell like subtype, 17 non germinal center B-cell, 23 transformed, and eight unclassified) and 18 controls, including nine peripheral B-cells, 5 germinal-center B-cells, four lymphadenitis samples, and 4 lymphoma cell lines (RI-1, SUDHL4, Karpas, U2932). Expression levels of a panel of 11 miRNAs that have been previously involved in other types of cancer (miR-15b_2, miR-16_1*, miR-16_2, miR-16_2*, miR-27a, miR-27a*, miR-98-1, miR-103a, miR-185, miR-199a, and miR-497) were measured and correlated with clinical data. Furthermore, cell lines, lacking miR-199a and miR-497 expression, were electroporated with the two respective miRNAs and treated with standard immunochemotherapy routinely used in patients with DLBCL, followed by functional analyses including cell count and apoptosis assays. Seven miRNAs (miR-16_1*, miR-16_2*, miR-27a, miR-103, miR-185, miR-199, and miR-497) were statistically significantly up-regulated in DLBCL compared to normal germinal cells. However, high expression of miR-497 or miR-199a was associated with better overall survival (p = 0.042 and p = 0.007). Overexpression of miR-199a and miR-497 led to a statistically significant decrease in viable cells in a dose-dependent fashion after exposure to rituximab and various chemotherapeutics relevant in multi-agent lymphoma therapy. Our data indicate that elevated miR-199a and miR-497 levels are associated with improved survival in aggressive lymphoma patients most likely by modifying drug sensitivity to immunochemotherapy. This functional impairment may serve as a potential novel therapeutic target in future treatment of patients with DLBCL. Full article
Figures

Open AccessReview What Do We Know about the Role of miRNAs in Pediatric Sarcoma?
Int. J. Mol. Sci. 2015, 16(7), 16593-16621; doi:10.3390/ijms160716593
Received: 29 May 2015 / Revised: 10 July 2015 / Accepted: 15 July 2015 / Published: 22 July 2015
Cited by 1 | PDF Full-text (870 KB) | HTML Full-text | XML Full-text
Abstract
Non-coding RNAs have received a lot of attention in recent years, with especial focus on microRNAs (miRNAs), so much so that in the just over two decades since the first miRNA, Lin4, was described, almost 40,000 publications about miRNAs have been generated.
[...] Read more.
Non-coding RNAs have received a lot of attention in recent years, with especial focus on microRNAs (miRNAs), so much so that in the just over two decades since the first miRNA, Lin4, was described, almost 40,000 publications about miRNAs have been generated. Less than 500 of these focus on sarcoma, and only a fraction of those on sarcomas of childhood specifically, with some of these representing observational studies and others containing functionally validated data. This is a group of cancers for which prognosis is often poor and therapeutic options limited, and it is especially in these areas that strides in understanding the role of non-coding RNAs and miRNAs in particular are to be welcomed. This review deals with the main forms of pediatric sarcoma, exploring what is known about the diagnostic and prognostic profiles of miRNAs in these tumours and where novel therapeutic options might present themselves for further exploration. Full article
Figures

Open AccessReview Families of microRNAs Expressed in Clusters Regulate Cell Signaling in Cervical Cancer
Int. J. Mol. Sci. 2015, 16(6), 12773-12790; doi:10.3390/ijms160612773
Received: 17 May 2015 / Revised: 28 May 2015 / Accepted: 29 May 2015 / Published: 5 June 2015
Cited by 2 | PDF Full-text (898 KB) | HTML Full-text | XML Full-text
Abstract
Tumor cells have developed advantages to acquire hallmarks of cancer like apoptosis resistance, increased proliferation, migration, and invasion through cell signaling pathway misregulation. The sequential activation of genes in a pathway is regulated by miRNAs. Loss or gain of miRNA expression could activate
[...] Read more.
Tumor cells have developed advantages to acquire hallmarks of cancer like apoptosis resistance, increased proliferation, migration, and invasion through cell signaling pathway misregulation. The sequential activation of genes in a pathway is regulated by miRNAs. Loss or gain of miRNA expression could activate or repress a particular cell axis. It is well known that aberrant miRNA expression is well recognized as an important step in the development of cancer. Individual miRNA expression is reported without considering that miRNAs are grouped in clusters and may have similar functions, such as the case of clusters with anti-oncomiRs (23b~27b~24-1, miR-29a~29b-1, miR-29b-2~29c, miR-99a~125b-2, miR-99b~125a, miR-100~125b-1, miR-199a-2~214, and miR-302s) or oncomiRs activity (miR-1-1~133a-2, miR-1-2~133a-1, miR-133b~206, miR-17~92, miR-106a~363, miR183~96~182, miR-181a-1~181b-1, and miR-181a-2~181b-2), which regulated mitogen-activated protein kinases (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), NOTCH, proteasome-culling rings, and apoptosis cell signaling. In this work we point out the pathways regulated by families of miRNAs grouped in 20 clusters involved in cervical cancer. Reviewing how miRNA families expressed in cluster-regulated cell path signaling will increase the knowledge of cervical cancer progression, providing important information for therapeutic, diagnostic, and prognostic methodology design. Full article
Open AccessArticle Regulative Effect of Mir-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway
Int. J. Mol. Sci. 2015, 16(5), 10491-10506; doi:10.3390/ijms160510491
Received: 16 March 2015 / Revised: 22 April 2015 / Accepted: 4 May 2015 / Published: 7 May 2015
Cited by 10 | PDF Full-text (4265 KB) | HTML Full-text | XML Full-text
Abstract
Bone mesenchymal stem cells (BMSCs) have multiple potentials to differentiate into osteoblasts and adipocytes, and methods to enhance their osteogenic differentiation are gaining increasing attention. MicroRNAs are critical regulation factors during the process of the osteogenic induction in BMSCs, and mir-205 has been
[...] Read more.
Bone mesenchymal stem cells (BMSCs) have multiple potentials to differentiate into osteoblasts and adipocytes, and methods to enhance their osteogenic differentiation are gaining increasing attention. MicroRNAs are critical regulation factors during the process of the osteogenic induction in BMSCs, and mir-205 has been substantiated to be involved in the osteogenic process, but the underlying mechanisms remain unclear. The purpose of this article is to investigate the role of mir-205 in the osteogenic differentiation of BMSCs. We found that mir-205 expression was down-regulated in a time-dependent manner during BMSC osteo-induction. Inhibition of mir-205 enhanced osteogenic abilities by up-regulating bone sialoprotein (BSP) and osteopontin (OPN) protein levels and increasing alkaline phosphatase (ALP) activity and osteocalcin secretion. Furthermore, we found that mir-205 could regulate protein expression of special AT-rich sequence-binding protein 2 (SATB2) and runt-related transcription factor 2 (Runx2), and over-expression of SATB2 activated Runx2 and reversed the negative effects of mir-205 on osteoblastic differentiation. Furthermore, we examined the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways during osteogenic induction and our data indicates that mir-205 might exert negative functions on the osteogenic differentiation in BMSCs at least partly via altering phosphorylation of ERK and p38 MAPK. These results shed new light on the molecular mechanisms of microRNAs in governing differentiation of BMSCs. Full article
Open AccessArticle The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types
Int. J. Mol. Sci. 2015, 16(5), 9635-9653; doi:10.3390/ijms16059635
Received: 8 January 2015 / Revised: 24 March 2015 / Accepted: 13 April 2015 / Published: 29 April 2015
PDF Full-text (2876 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber
[...] Read more.
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles. Full article
Open AccessArticle Micro RNA-124a Regulates Lipolysis via Adipose Triglyceride Lipase and Comparative Gene Identification 58
Int. J. Mol. Sci. 2015, 16(4), 8555-8568; doi:10.3390/ijms16048555
Received: 26 February 2015 / Revised: 24 March 2015 / Accepted: 26 March 2015 / Published: 16 April 2015
Cited by 1 | PDF Full-text (8861 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Lipolysis is the biochemical pathway responsible for the catabolism of cellular triacylglycerol (TG). Lipolytic TG breakdown is a central metabolic process leading to the generation of free fatty acids (FA) and glycerol, thereby regulating lipid, as well as energy homeostasis. The precise tuning
[...] Read more.
Lipolysis is the biochemical pathway responsible for the catabolism of cellular triacylglycerol (TG). Lipolytic TG breakdown is a central metabolic process leading to the generation of free fatty acids (FA) and glycerol, thereby regulating lipid, as well as energy homeostasis. The precise tuning of lipolysis is imperative to prevent lipotoxicity, obesity, diabetes and other related metabolic disorders. Here, we present our finding that miR-124a attenuates RNA and protein expression of the major TG hydrolase, adipose triglyceride lipase (ATGL/PNPLA2) and its co-activator comparative gene identification 58 (CGI-58/ABHD5). Ectopic expression of miR-124a in adipocytes leads to reduced lipolysis and increased cellular TG accumulation. This phenotype, however, can be rescued by overexpression of truncated Atgl lacking its 3'UTR, which harbors the identified miR-124a target site. In addition, we observe a strong negative correlation between miR-124a and Atgl expression in various murine tissues. Moreover, miR-124a regulates the expression of Atgl and Cgi-58 in murine white adipose tissue during fasting as well as the expression of Atgl in murine liver, during fasting and re-feeding. Together, these results point to an instrumental role of miR-124a in the regulation of TG catabolism. Therefore, we suggest that miR-124a may be involved in the regulation of several cellular and organismal metabolic parameters, including lipid storage and plasma FA concentration. Full article
Open AccessArticle Resistance Training Regulates Cardiac Function through Modulation of miRNA-214
Int. J. Mol. Sci. 2015, 16(4), 6855-6867; doi:10.3390/ijms16046855
Received: 6 October 2014 / Revised: 10 November 2014 / Accepted: 13 November 2014 / Published: 26 March 2015
Cited by 5 | PDF Full-text (1027 KB) | HTML Full-text | XML Full-text
Abstract
Aims: To determine the effects of resistance training (RT) on the expression of microRNA (miRNA)-214 and its target in sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), and on the morphological and mechanical properties of isolated left ventricular myocytes. Main methods: Male Wistar rats were
[...] Read more.
Aims: To determine the effects of resistance training (RT) on the expression of microRNA (miRNA)-214 and its target in sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), and on the morphological and mechanical properties of isolated left ventricular myocytes. Main methods: Male Wistar rats were divided into two groups (n = 7/group): Control (CO) or trained (TR). The exercise-training protocol consisted of: 4 × 12 bouts, 5×/week during 8 weeks, with 80% of one repetition maximum. Key findings: RT increased the left ventricular myocyte width by 15% and volume by 12%, compared with control animals (p < 0.05). The time to half relaxation and time to peak were 8.4% and 4.4% lower, respectively, in cells from TR group as compared to CO group (p < 0.05). RT decreased miRNA-214 level by 18.5% while its target SERCA2a expression were 18.5% higher (p < 0.05). Significance: Our findings showed that RT increases single left ventricular myocyte dimensions and also leads to faster cell contraction and relaxation. These mechanical adaptations may be related to the augmented expression of SERCA2a which, in turn, may be associated with the epigenetic modification of decreased miRNA-214 expression. Full article
Open AccessReview Exploring the Secrets of Long Noncoding RNAs
Int. J. Mol. Sci. 2015, 16(3), 5467-5496; doi:10.3390/ijms16035467
Received: 12 December 2014 / Revised: 22 February 2015 / Accepted: 3 March 2015 / Published: 10 March 2015
Cited by 7 | PDF Full-text (1688 KB) | HTML Full-text | XML Full-text
Abstract
High-throughput sequencing has revealed that the majority of RNAs have no capacity to encode protein. Among these non-coding transcripts, recent work has focused on the roles of long noncoding RNAs (lncRNAs) of >200 nucleotides. Although many of their attributes, such as patterns of
[...] Read more.
High-throughput sequencing has revealed that the majority of RNAs have no capacity to encode protein. Among these non-coding transcripts, recent work has focused on the roles of long noncoding RNAs (lncRNAs) of >200 nucleotides. Although many of their attributes, such as patterns of expression, remain largely unknown, lncRNAs have key functions in transcriptional, post-transcriptional, and epigenetic gene regulation; Also, new work indicates their functions in scaffolding ribonuclear protein complexes. In plants, genome-wide identification of lncRNAs has been conducted in several species, including Zea mays, and recent research showed that lncRNAs regulate flowering time in the photoperiod pathway, and function in nodulation. In this review, we discuss the basic mechanisms by which lncRNAs regulate key cellular processes, using the large body of knowledge on animal and yeast lncRNAs to illustrate the significance of emerging work on lncRNAs in plants. Full article
Open AccessReview Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities
Int. J. Mol. Sci. 2015, 16(3), 4947-4972; doi:10.3390/ijms16034947
Received: 23 December 2014 / Revised: 17 February 2015 / Accepted: 17 February 2015 / Published: 4 March 2015
PDF Full-text (2020 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under
[...] Read more.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy. Full article
Open AccessReview Neighboring Gene Regulation by Antisense Long Non-Coding RNAs
Int. J. Mol. Sci. 2015, 16(2), 3251-3266; doi:10.3390/ijms16023251
Received: 17 November 2014 / Accepted: 22 January 2015 / Published: 3 February 2015
Cited by 25 | PDF Full-text (2251 KB) | HTML Full-text | XML Full-text
Abstract
Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs),
[...] Read more.
Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs), one of the most diverse classes of cellular transcripts, which have demonstrated multifunctional roles in fundamental biological processes, including embryonic pluripotency, differentiation and development. Antisense lncRNAs have been shown to control nearly every level of gene regulation—pretranscriptional, transcriptional and posttranscriptional—through DNA–RNA, RNA–RNA or protein–RNA interactions. This review is centered on functional studies of antisense lncRNA-mediated regulation of neighboring gene expression. Specifically, it addresses how these transcripts interact with other biological molecules, nucleic acids and proteins, to regulate gene expression through chromatin remodeling at the pretranscriptional level and modulation of transcriptional and post-transcriptional processes by altering the sense mRNA structure or the cellular compartmental distribution, either in the nucleus or the cytoplasm. Full article
Figures

Open AccessReview Long Non-Coding RNAs in Cancer and Development: Where Do We Go from Here?
Int. J. Mol. Sci. 2015, 16(1), 1395-1405; doi:10.3390/ijms16011395
Received: 16 December 2014 / Accepted: 30 December 2014 / Published: 8 January 2015
Cited by 14 | PDF Full-text (1385 KB) | HTML Full-text | XML Full-text
Abstract
Recent genome-wide expression profiling studies have uncovered a huge amount of novel, long non-protein-coding RNA transcripts (lncRNA). In general, these transcripts possess a low, but tissue-specific expression, and their nucleotide sequences are often poorly conserved. However, several studies showed that lncRNAs can have
[...] Read more.
Recent genome-wide expression profiling studies have uncovered a huge amount of novel, long non-protein-coding RNA transcripts (lncRNA). In general, these transcripts possess a low, but tissue-specific expression, and their nucleotide sequences are often poorly conserved. However, several studies showed that lncRNAs can have important roles for normal tissue development and regulate cellular pluripotency as well as differentiation. Moreover, lncRNAs are implicated in the control of multiple molecular pathways leading to gene expression changes and thus, ultimately modulate cell proliferation, migration and apoptosis. Consequently, deregulation of lncRNA expression contributes to carcinogenesis and is associated with human diseases, e.g., neurodegenerative disorders like Alzheimer’s Disease. Here, we will focus on some major challenges of lncRNA research, especially loss-of-function studies. We will delineate strategies for lncRNA gene targeting in vivo, and we will briefly discuss important consideration and pitfalls when investigating lncRNA functions in knockout animal models. Finally, we will highlight future opportunities for lncRNAs research by applying the concept of cross-species comparison, which might contribute to novel disease biomarker discovery and might identify lncRNAs as potential therapeutic targets. Full article
Open AccessArticle MicroRNA Expression Profiling of Lactating Mammary Gland in Divergent Phenotype Swine Breeds
Int. J. Mol. Sci. 2015, 16(1), 1448-1465; doi:10.3390/ijms16011448
Received: 1 December 2014 / Accepted: 30 December 2014 / Published: 8 January 2015
Cited by 4 | PDF Full-text (4241 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
MicroRNA (miRNA) plays a key role in development and specific biological processes, such as cell proliferation, differentiation, and apoptosis. Extensive studies of mammary miRNAs have been performed in different species and tissues. However, little is known about porcine mammary gland miRNAs. In this
[...] Read more.
MicroRNA (miRNA) plays a key role in development and specific biological processes, such as cell proliferation, differentiation, and apoptosis. Extensive studies of mammary miRNAs have been performed in different species and tissues. However, little is known about porcine mammary gland miRNAs. In this study, we report the identification and characterization of miRNAs in the lactating mammary gland in two distinct pig breeds, Jinhua and Yorkshire. Many miRNAs were detected as significantly differentially expressed between the two libraries. Among the differentially expressed miRNAs, many are known to be related to mammary gland development and lactation by interacting with putative target genes in previous studies. These findings suggest that miRNA expression patterns may contribute significantly to target mRNA regulation and influence mammary gland development and peak lactation performance. The data we obtained provide useful information about the roles of miRNAs in the biological processes of lactation and the mechanisms of target gene expression and regulation. Full article
Figures

Open AccessArticle Prediction of Mature MicroRNA and Piwi-Interacting RNA without a Genome Reference or Precursors
Int. J. Mol. Sci. 2015, 16(1), 1466-1481; doi:10.3390/ijms16011466
Received: 31 October 2014 / Accepted: 5 January 2015 / Published: 8 January 2015
Cited by 1 | PDF Full-text (2121 KB) | HTML Full-text | XML Full-text
Abstract
The discovery of novel microRNA (miRNA) and piwi-interacting RNA (piRNA) is an important task for the understanding of many biological processes. Most of the available miRNA and piRNA identification methods are dependent on the availability of the organism’s genome sequence and the quality
[...] Read more.
The discovery of novel microRNA (miRNA) and piwi-interacting RNA (piRNA) is an important task for the understanding of many biological processes. Most of the available miRNA and piRNA identification methods are dependent on the availability of the organism’s genome sequence and the quality of its annotation. Therefore, an efficient prediction method based solely on the short RNA reads and requiring no genomic information is highly desirable. In this study, we propose an approach that relies primarily on the nucleotide composition of the read and does not require reference genomes of related species for prediction. Using an empirical Bayesian kernel method and the error correcting output codes framework, compact models suitable for large-scale analyses are built on databases of known mature miRNAs and piRNAs. We found that the usage of an L1-based Gaussian kernel can double the true positive rate compared to the standard L2-based Gaussian kernel. Our approach can increase the true positive rate by at most 60% compared to the existing piRNA predictor based on the analysis of a hold-out test set. Using experimental data, we also show that our approach can detect about an order of magnitude or more known miRNAs than the mature miRNA predictor, miRPlex. Full article
Open AccessArticle Telomerase Reverse Transcriptase Regulates microRNAs
Int. J. Mol. Sci. 2015, 16(1), 1192-1208; doi:10.3390/ijms16011192
Received: 22 November 2014 / Accepted: 26 December 2014 / Published: 6 January 2015
Cited by 5 | PDF Full-text (863 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs. In humans, most microRNAs are transcribed by RNA polymerase II as long primary transcripts and processed by sequential cleavage of the two RNase III enzymes, DROSHA and DICER, into precursor and
[...] Read more.
MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs. In humans, most microRNAs are transcribed by RNA polymerase II as long primary transcripts and processed by sequential cleavage of the two RNase III enzymes, DROSHA and DICER, into precursor and mature microRNAs, respectively. Although the fundamental functions of microRNAs in RNA silencing have been gradually uncovered, less is known about the regulatory mechanisms of microRNA expression. Here, we report that telomerase reverse transcriptase (TERT) extensively affects the expression levels of mature microRNAs. Deep sequencing-based screens of short RNA populations revealed that the suppression of TERT resulted in the downregulation of microRNAs expressed in THP-1 cells and HeLa cells. Primary and precursor microRNA levels were also reduced under the suppression of TERT. Similar results were obtained with the suppression of either BRG1 (also called SMARCA4) or nucleostemin, which are proteins interacting with TERT and functioning beyond telomeres. These results suggest that TERT regulates microRNAs at the very early phases in their biogenesis, presumably through non-telomerase mechanism(s). Full article

2014

Jump to: 2016, 2015

Open AccessReview MicroRNA Signatures as Biomarkers and Therapeutic Target for CNS Embryonal Tumors: The Pros and the Cons
Int. J. Mol. Sci. 2014, 15(11), 21554-21586; doi:10.3390/ijms151121554
Received: 19 September 2014 / Revised: 7 November 2014 / Accepted: 8 November 2014 / Published: 24 November 2014
Cited by 10 | PDF Full-text (1422 KB) | HTML Full-text | XML Full-text
Abstract
Embryonal tumors of the central nervous system represent a heterogeneous group of childhood cancers with an unknown pathogenesis; diagnosis, on the basis of histological appearance alone, is controversial and patients’ response to therapy is difficult to predict. They encompass medulloblastoma, atypical teratoid/rhabdoid tumors
[...] Read more.
Embryonal tumors of the central nervous system represent a heterogeneous group of childhood cancers with an unknown pathogenesis; diagnosis, on the basis of histological appearance alone, is controversial and patients’ response to therapy is difficult to predict. They encompass medulloblastoma, atypical teratoid/rhabdoid tumors and a group of primitive neuroectodermal tumors. All are aggressive tumors with the tendency to disseminate throughout the central nervous system. The large amount of genomic and molecular data generated over the last 5–10 years encourages optimism that new molecular targets will soon improve outcomes. Recent neurobiological studies have uncovered the key role of microRNAs (miRNAs) in embryonal tumors biology and their potential use as biomarkers is increasingly being recognized and investigated. However the successful use of microRNAs as reliable biomarkers for the detection and management of pediatric brain tumors represents a substantial challenge. This review debates the importance of miRNAs in the biology of central nervous systemembryonal tumors focusing on medulloblastoma and atypical teratoid/rhabdoid tumors and highlights the advantages as well as the limitations of their prospective application as biomarkers and candidates for molecular therapeutic targets. Full article
Open AccessReview Long Non-Coding RNAs: Critical Players in Hepatocellular Carcinoma
Int. J. Mol. Sci. 2014, 15(11), 20434-20448; doi:10.3390/ijms151120434
Received: 17 September 2014 / Revised: 30 October 2014 / Accepted: 30 October 2014 / Published: 7 November 2014
Cited by 13 | PDF Full-text (1408 KB) | HTML Full-text | XML Full-text
Abstract
Hepatocellular carcinoma (HCC) is a complex disease with multiple underlying pathogenic mechanisms caused by a variety of etiologic factors. Emerging evidence showed that long non-coding RNAs (lncRNAs), with size larger than 200 nucleotides (nt), play important roles in various types of cancer development
[...] Read more.
Hepatocellular carcinoma (HCC) is a complex disease with multiple underlying pathogenic mechanisms caused by a variety of etiologic factors. Emerging evidence showed that long non-coding RNAs (lncRNAs), with size larger than 200 nucleotides (nt), play important roles in various types of cancer development and progression. In recent years, some dysregulated lncRNAs in HCC have been revealed and roles for several of them in HCC have been characterized. All these findings point to the potential of lncRNAs as prospective novel therapeutic targets in HCC. In this review, we summarize known dysregulated lncRNAs in HCC, and review potential biological roles and underlying molecular mechanisms of lncRNAs in HCC. Additionally, we discussed prospects of lncRNAs as potential biomarker and therapeutic target for HCC. In conclusion, this paper will help us gain better understanding of molecular mechanisms by which lncRNAs perform their function in HCC and also provide general strategies and directions for future research. Full article
Open AccessReview Hunting the Needle in the Haystack: A Guide to Obtain Biologically Meaningful MicroRNA Targets
Int. J. Mol. Sci. 2014, 15(11), 20266-20289; doi:10.3390/ijms151120266
Received: 11 August 2014 / Revised: 22 October 2014 / Accepted: 27 October 2014 / Published: 6 November 2014
Cited by 7 | PDF Full-text (428 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs of ~23 nucleotides in length that form up a novel class of regulatory determinants, with a large set of target mRNAs postulated for every single miRNA. Thousands of miRNAs have been discovered so far, with hundreds
[...] Read more.
MicroRNAs (miRNAs) are endogenous small non-coding RNAs of ~23 nucleotides in length that form up a novel class of regulatory determinants, with a large set of target mRNAs postulated for every single miRNA. Thousands of miRNAs have been discovered so far, with hundreds of them shown to govern biological processes with impact on disease. However, very little is known about how they specifically interfere with biological pathways and disease mechanisms. To investigate this interaction, the hunt for direct miRNA targets that mediate the miRNA effects—the “needle in the haystack”—is an essential step. In this review we provide a comprehensive workflow of successfully applied methods starting from the identification of putative miRNA-target pairs, followed by validation of direct miRNA–mRNA interactions, and finally presenting methods that dissect the impact of particular miRNA-target pairs on a biological process or disease. This guide allows the way to be paved for obtaining biologically meaningful miRNA targets. Full article
Figures

Open AccessArticle MicroRNAs Associated with the Efficacy of Photodynamic Therapy in Biliary Tract Cancer Cell Lines
Int. J. Mol. Sci. 2014, 15(11), 20134-20157; doi:10.3390/ijms151120134
Received: 29 May 2014 / Revised: 27 August 2014 / Accepted: 27 October 2014 / Published: 5 November 2014
Cited by 8 | PDF Full-text (816 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Photodynamic therapy (PDT) is a palliative treatment option for unresectable hilar biliary tract cancer (BTC) showing a considerable benefit for survival and quality of life with few side effects. Currently, factors determining the cellular response of BTC cells towards PDT are unknown. Due
[...] Read more.
Photodynamic therapy (PDT) is a palliative treatment option for unresectable hilar biliary tract cancer (BTC) showing a considerable benefit for survival and quality of life with few side effects. Currently, factors determining the cellular response of BTC cells towards PDT are unknown. Due to their multifaceted nature, microRNAs (miRs) are a promising analyte to investigate the cellular mechanisms following PDT. For two photosensitizers, Photofrin® and Foscan®, the phototoxicity was investigated in eight BTC cell lines. Each cell line (untreated) was profiled for expression of n = 754 miRs using TaqMan® Array Human MicroRNA Cards. Statistical analysis and bioinformatic tools were used to identify miRs associated with PDT efficiency and their putative targets, respectively. Twenty miRs correlated significantly with either high or low PDT efficiency. PDT was particularly effective in cells with high levels of clustered miRs 25-93*-106b and (in case of miR-106b) a phenotype characterized by high expression of the mesenchymal marker vimentin and high proliferation (cyclinD1 and Ki67 expression). Insensitivity towards PDT was associated with high miR-200 family expression and (for miR-cluster 200a/b-429) expression of differentiation markers Ck19 and Ck8/18. Predicted and validated downstream targets indicate plausible involvement of miRs 20a*, 25, 93*, 130a, 141, 200a, 200c and 203 in response mechanisms to PDT, suggesting that targeting these miRs could improve susceptibility to PDT in insensitive cell lines. Taken together, the miRNome pattern may provide a novel tool for predicting the efficiency of PDT and—following appropriate functional verification—may subsequently allow for optimization of the PDT protocol. Full article
Open AccessReview Small Engine, Big Power: MicroRNAs as Regulators of Cardiac Diseases and Regeneration
Int. J. Mol. Sci. 2014, 15(9), 15891-15911; doi:10.3390/ijms150915891
Received: 11 July 2014 / Revised: 27 August 2014 / Accepted: 27 August 2014 / Published: 9 September 2014
Cited by 9 | PDF Full-text (1162 KB) | HTML Full-text | XML Full-text
Abstract
Cardiac diseases are the predominant cause of human mortality in the United States and around the world. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to modulate a wide range of biological functions under various pathophysiological conditions. miRNAs alter target expression
[...] Read more.
Cardiac diseases are the predominant cause of human mortality in the United States and around the world. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to modulate a wide range of biological functions under various pathophysiological conditions. miRNAs alter target expression by post-transcriptional regulation of gene expression. Numerous studies have implicated specific miRNAs in cardiovascular development, pathology, regeneration and repair. These observations suggest that miRNAs are potential therapeutic targets to prevent or treat cardiovascular diseases. This review focuses on the emerging role of miRNAs in cardiac development, pathogenesis of cardiovascular diseases, cardiac regeneration and stem cell-mediated cardiac repair. We also discuss the novel diagnostic and therapeutic potential of these miRNAs and their targets in patients with cardiac diseases. Full article
Figures

Open AccessReview Multistep Model of Cervical Cancer: Participation of miRNAs and Coding Genes
Int. J. Mol. Sci. 2014, 15(9), 15700-15733; doi:10.3390/ijms150915700
Received: 20 June 2014 / Revised: 5 August 2014 / Accepted: 13 August 2014 / Published: 4 September 2014
Cited by 12 | PDF Full-text (2177 KB) | HTML Full-text | XML Full-text
Abstract
Aberrant miRNA expression is well recognized as an important step in the development of cancer. Close to 70 microRNAs (miRNAs) have been implicated in cervical cancer up to now, nevertheless it is unknown if aberrant miRNA expression causes the onset of cervical cancer.
[...] Read more.
Aberrant miRNA expression is well recognized as an important step in the development of cancer. Close to 70 microRNAs (miRNAs) have been implicated in cervical cancer up to now, nevertheless it is unknown if aberrant miRNA expression causes the onset of cervical cancer. One of the best ways to address this issue is through a multistep model of carcinogenesis. In the progression of cervical cancer there are three well-established steps to reach cancer that we used in the model proposed here. The first step of the model comprises the gene changes that occur in normal cells to be transformed into immortal cells (CIN 1), the second comprises immortal cell changes to tumorigenic cells (CIN 2), the third step includes cell changes to increase tumorigenic capacity (CIN 3), and the final step covers tumorigenic changes to carcinogenic cells. Altered miRNAs and their target genes are located in each one of the four steps of the multistep model of carcinogenesis. miRNA expression has shown discrepancies in different works; therefore, in this model we include miRNAs recording similar results in at least two studies. The present model is a useful insight into studying potential prognostic, diagnostic, and therapeutic miRNAs. Full article
Open AccessReview MicroRNAs, Genomic Instability and Cancer
Int. J. Mol. Sci. 2014, 15(8), 14475-14491; doi:10.3390/ijms150814475
Received: 2 July 2014 / Revised: 7 August 2014 / Accepted: 12 August 2014 / Published: 20 August 2014
Cited by 11 | PDF Full-text (657 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs) are small non-coding RNA transcripts approximately 20 nucleotides in length that regulate expression of protein-coding genes via complementary binding mechanisms. The last decade has seen an exponential increase of publications on miRNAs, ranging from every aspect of basic cancer biology to
[...] Read more.
MicroRNAs (miRNAs) are small non-coding RNA transcripts approximately 20 nucleotides in length that regulate expression of protein-coding genes via complementary binding mechanisms. The last decade has seen an exponential increase of publications on miRNAs, ranging from every aspect of basic cancer biology to diagnostic and therapeutic explorations. In this review, we summarize findings of miRNA involvement in genomic instability, an interesting but largely neglected topic to date. We discuss the potential mechanisms by which miRNAs induce genomic instability, considered to be one of the most important driving forces of cancer initiation and progression, though its precise mechanisms remain elusive. We classify genomic instability mechanisms into defects in cell cycle regulation, DNA damage response, and mitotic separation, and review the findings demonstrating the participation of specific miRNAs in such mechanisms. Full article
Figures

Open AccessReview Current Status of Long Non-Coding RNAs in Human Cancer with Specific Focus on Colorectal Cancer
Int. J. Mol. Sci. 2014, 15(8), 13993-14013; doi:10.3390/ijms150813993
Received: 30 June 2014 / Revised: 23 July 2014 / Accepted: 5 August 2014 / Published: 12 August 2014
Cited by 8 | PDF Full-text (1096 KB) | HTML Full-text | XML Full-text
Abstract
The latest investigations of long non-coding RNAs (lncRNAs) have revealed their important role in human cancers. LncRNAs are larger than 200 nucleotides in length and fulfill their cellular purpose without being translated into proteins. Though the molecular functions of some lncRNAs have been
[...] Read more.
The latest investigations of long non-coding RNAs (lncRNAs) have revealed their important role in human cancers. LncRNAs are larger than 200 nucleotides in length and fulfill their cellular purpose without being translated into proteins. Though the molecular functions of some lncRNAs have been elucidated, there is still a high number of lncRNAs with unknown or controversial functions. In this review, we provide an overview of different lncRNAs and their role in human cancers. In particular, we emphasize their importance in tumorigenesis of colorectal cancer, the third most common cancer worldwide. Full article
Open AccessReview Non-Coding RNAs and Lipid Metabolism
Int. J. Mol. Sci. 2014, 15(8), 13494-13513; doi:10.3390/ijms150813494
Received: 14 June 2014 / Revised: 14 July 2014 / Accepted: 28 July 2014 / Published: 4 August 2014
Cited by 3 | PDF Full-text (743 KB) | HTML Full-text | XML Full-text
Abstract
A high percentage of the mammalian genome consists of non-coding RNAs (ncRNAs). Among ncRNAs two main subgroups have been identified: long ncRNAs (lncRNAs) and micro RNAs (miRNAs). ncRNAs have been demonstrated to play a role in a vast variety of diseases, since they
[...] Read more.
A high percentage of the mammalian genome consists of non-coding RNAs (ncRNAs). Among ncRNAs two main subgroups have been identified: long ncRNAs (lncRNAs) and micro RNAs (miRNAs). ncRNAs have been demonstrated to play a role in a vast variety of diseases, since they regulate gene transcription and are involved in post-transcriptional regulation. They have the potential to function as molecular signals or as guides for transcription factors and to regulate epigenetic modifiers. In this literature review we have summarized data on miRNAs and lncRNAs and their involvement in dyslipidaemia, atherosclerosis, insulin resistance and adipogenesis. Outlining certain ncRNAs as disease biomarkers and/or therapeutic targets, and testing them in vivo, will be the next steps in future research. Full article

Journal Contact

MDPI AG
IJMS Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
ijms@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to IJMS
Back to Top