- Article
The Response of Maximum Freezing Depth in the Permafrost Region of the Source Region of the Yellow River to Ground Temperature Change
- Xinyu Bai and
- Wei Wang
The source region of the Yellow River on the Tibetan Plateau constitutes a critical ecological security barrier and a key water-conservation region, where permafrost dynamics exercise primary control over ecosystem stability and hydrological processes. Although observations document intensifying freeze–thaw processes under climate warming, the historical and future evolution of maximum freezing depth, abbreviated as MFD, in the source region of the Yellow River remains poorly constrained. Using ground-temperature and meteorological records from 15 stations for 1981–2014, we estimated MFD with a Stefan-type formulation, assessed trend significance using the Mann–Kendall test and Sen’s slope, and characterized changes through 2100 using CMIP6 projections under four shared socioeconomic pathways: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. We found a strong inverse association between MFD and annual mean ground temperature, such that a 1 °C increase corresponds to an average decrease of approximately 13.2 cm. Historically, MFD has progressively shallowed and exhibits a clear meridional gradient—deeper in the north and shallower in the south; low-value zones declined from 0.75 to 0.50 m, whereas high-value zones decreased from 2.92 to 2.83 m. Across future scenarios, MFD continues to shallow; the strongest signal occurs under SSP5-8.5, yielding an additional decline of approximately 42 percent relative to the historical baseline, with degradation most pronounced at lower elevations. These findings provide actionable guidance for understanding ecohydrological processes and for water resource management in the source region of the Yellow River under climate warming.
Atmosphere,
12 December 2025


