Advancing Open Science
Supporting academic communities
since 1996
 
12 pages, 654 KB  
Article
Effect of Photoperiod Duration and LED Light Quality on the Metabolite Profiles of High-Mountain Microalgal Isolates
by William H. Suárez Quintana, Ramón O. García-Rico, Janet B. García-Martínez, Néstor A. Urbina-Suarez, Germán L. López-Barrera and Andrés F. Barajas-Solano
Phycology 2025, 5(4), 59; https://doi.org/10.3390/phycology5040059 - 10 Oct 2025
Abstract
High-mountain microalgae exhibit remarkable adaptability to extreme environments, making them promising candidates for sustainable biorefineries. We evaluated how photoperiod (12:12, 18:6, 24:0 h) and LED spectra (cool white, full spectrum, red–blue 4:1) affect growth and metabolite formation in Chlorella sp. UFPS019 and Scenedesmus [...] Read more.
High-mountain microalgae exhibit remarkable adaptability to extreme environments, making them promising candidates for sustainable biorefineries. We evaluated how photoperiod (12:12, 18:6, 24:0 h) and LED spectra (cool white, full spectrum, red–blue 4:1) affect growth and metabolite formation in Chlorella sp. UFPS019 and Scenedesmus sp. UFPS021. Biomass peaked in Chlorella under red–blue 18:6 (≈1.8 g L−1) and in Scenedesmus under red–blue 24:0 (≈1.7 g L−1), revealing species-specific responses. Carbohydrate fractions were maximized under red–blue 12:12 in both species, and continuous light (24:0) depressed carbohydrate content—most notably under full spectrum. Protein content was highest under red–blue 18:6 in Chlorella sp. and under red–blue 12:12–18:6 in Scenedesmus sp. Lipid fractions increased with light duration, peaking under red–blue 18:6–24:0 in Chlorella and under red–blue 18:6–24:0—with Cool White 24:0 also high—in Scenedesmus sp. Although extended illumination favored lipids, intermediate photoperiods (12:12–18:6) provided better productivity-to-energy trade-offs and broader metabolic profiles. These results show that tuning spectral composition and photoperiod to species-specific physiology enables the targeted, energy-aware production of proteins, carbohydrates, or lipids; red–blue at intermediate durations is a robust, energy-efficient regime, whereas longer exposures can be used strategically when lipid enrichment is prioritized. Full article
(This article belongs to the Special Issue Development of Algal Biotechnology)
24 pages, 17690 KB  
Article
Power-Compensated White Laser Underwater Imaging Applications Based on Transmission Distance
by Weiyu Cai, Guangwang Ding, Xiaomei Liu, Xiang Li, Houjie Chen, Xiaojuan Ma and Hua Liu
Optics 2025, 6(4), 51; https://doi.org/10.3390/opt6040051 - 10 Oct 2025
Abstract
The complex aquatic environment attenuates light transmission, thereby limiting the detection range of underwater laser systems. To address the challenges of limited operational distance and significant light energy attenuation, this study investigates optimized underwater lighting and imaging applications using a combined tricolor RGB [...] Read more.
The complex aquatic environment attenuates light transmission, thereby limiting the detection range of underwater laser systems. To address the challenges of limited operational distance and significant light energy attenuation, this study investigates optimized underwater lighting and imaging applications using a combined tricolor RGB (RED-GREEN-BLUE) white laser source. First, accounting for the attenuation characteristics of water, we propose a power-compensated white laser system based on transmission distance and underwater imaging theory. Second, underwater experiments are conducted utilizing both standard D65 white lasers and the proposed power-compensated white lasers, respectively. Finally, the theory is validated by assessing image quality metrics of the captured underwater imagery. The results demonstrate that a low-power (0.518 W) power-compensated white laser achieves a transmission distance of 5 m, meeting the requirements for a long-range, low-power imaging light source. Its capability for independent adjustment of the three-color power output fulfills the lighting demands for specific long-distance transmission scenarios. These findings confirm the advantages of power-compensated white lasers in long-range underwater detection and refine the characterization of white light for underwater illumination. Full article
Show Figures

Figure 1

10 pages, 398 KB  
Brief Report
The Effect of Maternal Engagement in Their Children’s Distance Learning on Parental Stress and Offspring's Internalizing and Externalizing Symptoms During COVID-19 School Closure
by Luca Cerniglia and Silvia Cimino
COVID 2025, 5(10), 170; https://doi.org/10.3390/covid5100170 - 10 Oct 2025
Abstract
Keywords: COVID-19; home-based learning; children; caregiving; psychopathological symptoms; parental stress Full article
(This article belongs to the Section COVID Public Health and Epidemiology)
33 pages, 13616 KB  
Review
Mapping the Evolution of New Energy Vehicle Fire Risk Research: A Comprehensive Bibliometric Analysis
by Yali Zhao, Jie Kong, Yimeng Cao, Hui Liu and Wenjiao You
Fire 2025, 8(10), 395; https://doi.org/10.3390/fire8100395 - 10 Oct 2025
Abstract
To gain a comprehensive understanding of the current research landscape in the field of new energy vehicle (NEV) fires and to explore its knowledge base and emerging trends, bibliometric methods—such as co-occurrence, clustering, and co-citation analyses—were employed to examine the relevant literature. A [...] Read more.
To gain a comprehensive understanding of the current research landscape in the field of new energy vehicle (NEV) fires and to explore its knowledge base and emerging trends, bibliometric methods—such as co-occurrence, clustering, and co-citation analyses—were employed to examine the relevant literature. A research knowledge framework was established, encompassing four primary themes: thermal management and performance optimization of power batteries, battery materials and their safety characteristics, thermal runaway (TR) and fire risk assessment, and fire prevention and control strategies. The key research frontiers in this domain could be classified into five categories: mechanisms and propagation of TR, development of high-safety battery materials and flame-retardant technologies, thermal management and thermal safety control, intelligent early warning and fault diagnosis, and fire suppression and firefighting techniques. The focus of research has gradually shifted from passive identification of causes and failure mechanisms to proactive approaches involving thermal control, predictive alerts, and integrated system-level fire safety solutions. As the field advances, increasing complexity and interdisciplinary integration have emerged as defining trends. Future research is expected to benefit from broader cross-disciplinary collaboration. These findings provide a valuable reference for researchers seeking a rapid overview of the evolving landscape of NEV fire-related studies. Full article
(This article belongs to the Special Issue Fire Safety and Sustainability)
Show Figures

Figure 1

18 pages, 3503 KB  
Article
Effects of Granular Material Deposition on the Road’s Stormwater Drainage System
by Francesco Abbondati, Carlo Gualtieri, Salvatore Antonio Biancardo and Gianluca Dell’Acqua
Infrastructures 2025, 10(10), 271; https://doi.org/10.3390/infrastructures10100271 - 10 Oct 2025
Abstract
Travel safety and comfort depend on the design and maintenance of road and stormwater drainage systems. In low-lying areas, poor drainage systems can—especially near underpasses—lead to flooding and serious risks, such as reduced load-bearing capacity hydroplaning, where tires lose grip. This study focuses [...] Read more.
Travel safety and comfort depend on the design and maintenance of road and stormwater drainage systems. In low-lying areas, poor drainage systems can—especially near underpasses—lead to flooding and serious risks, such as reduced load-bearing capacity hydroplaning, where tires lose grip. This study focuses on the effect of granular material deposits on the surface roughness of roadside gutters, as expressed through the Gauckler–Strickler coefficient. The literature equations have pointed out that this coefficient is largely affected by the grain size distribution of granular material. To this end, a field study was carried out in six urban roads in San Nicola la Strada, Italy, with the objectives of the following: (1) identifying the grain size distribution of the material deposited in roadside gutters; (2) estimating how such material decreased in the cross-sectional area of the gutters, as well as increasing their flow resistance, ultimately resulting in decreased water conveyance. Considering gutters with deposited material rather than clean ones results in the failure of three out of six gutters to effectively drain stormwater. Full article
Show Figures

Figure 1

20 pages, 1071 KB  
Article
Power-Based Statistical Detection of Substance Accumulation in Constrained Places Using a Contact-Less Passive Magnetoelastic Sensor
by Ioannis Kalyvas and Dimitrios Dimogianopoulos
Vibration 2025, 8(4), 64; https://doi.org/10.3390/vibration8040064 - 10 Oct 2025
Abstract
A contactless passive magnetoelastic sensing setup, recently proposed for detecting pest/substance accumulation in confined spaces (labs, museum reserves), is optimized for enhanced low-frequency performance. The setup uses a short flexible polymer slab, clamped at one end. There, a short Metglas® 2826MB magnetoelastic [...] Read more.
A contactless passive magnetoelastic sensing setup, recently proposed for detecting pest/substance accumulation in confined spaces (labs, museum reserves), is optimized for enhanced low-frequency performance. The setup uses a short flexible polymer slab, clamped at one end. There, a short Metglas® 2826MB magnetoelastic ribbon is fixed upon the slab’s surface. The opposite end receives excitation by a remotely controlled module of ultra-low amplitude vibration. When vibrating (with the slab), the ribbon generates magnetic flux, which depends on (and reflects) the slab’s dynamics. This changes when loads accumulate on its surface. The flux induces voltage in a contactless manner in a low-cost pick-up coil suspended above the ribbon. Voltage monitoring allows for evaluation of the vibrating slab’s real-time dynamics and, consequently, the detection of load-induced changes. This work innovates by introducing a low-cost passive circuit for real-time voltage processing, thus achieving an accurate representation of the low-frequency dynamics of the magnetic flux. Furthermore, it introduces an algorithm, which statistically detects load-induced changes using the voltage’s low-frequency power characteristics. Both additions enable load detection at relatively low frequencies, thus addressing a principal issue of passive contactless sensing setups. Extensive testing at different occasions demonstrates promising load detection performance under various conditions, especially given its cost-efficient hardware and operation. Full article
21 pages, 1765 KB  
Article
Assessing Infrastructure Readiness of Controlled-Access Roads in West Bangkok for Autonomous Vehicle Deployment
by Vasin Kiattikomol, Laphisa Nuangrod, Arissara Rung-in and Vanchanok Chuathong
Infrastructures 2025, 10(10), 270; https://doi.org/10.3390/infrastructures10100270 - 10 Oct 2025
Abstract
The deployment of autonomous vehicles (AVs) depends on the readiness of both physical and digital infrastructure. However, existing national and city-level indices often overlook deficiencies along specific routes, particularly in developing contexts such as Thailand, where infrastructure conditions vary widely. This study develops [...] Read more.
The deployment of autonomous vehicles (AVs) depends on the readiness of both physical and digital infrastructure. However, existing national and city-level indices often overlook deficiencies along specific routes, particularly in developing contexts such as Thailand, where infrastructure conditions vary widely. This study develops and applies a corridor-level framework to assess AV readiness on five controlled-access roads in western Bangkok. The framework evaluates key infrastructure dimensions beyond conventional vehicle requirements. In this study, infrastructure readiness means the extent to which essential physical (EV charging capacity, traffic sign visibility, and lane marking retroreflectivity) and digital (5G speed and coverage) subsystems meet minimum operational thresholds required for AV deployment. Data were collected through field measurements and secondary sources, utilizing tools such as a retroreflectometer, a handheld spectrum analyzer, and the Ookla Speedtest application. The results reveal significant contrasts for physical infrastructure, showing that traffic signage is generally satisfactory, but EV charging capacity and road marking retroreflectivity are insufficient on most routes. On the digital side, 5G coverage was generally adequate, but network speeds remained less than half of the global benchmark. Kanchanaphisek Road demonstrated comparatively higher digital readiness, whereas Ratchaphruek Road exhibited the weakest road marking conditions. These findings point out the need for stepwise enhancements to EV charging infrastructure, lane marking maintenance, and digital connectivity to support safe and reliable AV operations. The proposed framework not only provides policymakers in Thailand with a practical tool for prioritizing corridor-level investments but also offers transferability to other rapidly developing urban regions experiencing similar infrastructure challenges for AV deployment. Full article
36 pages, 8903 KB  
Article
Sustainable Valorization of Bovine–Guinea Pig Waste: Co-Optimization of pH and EC in Biodigesters
by Daniela Geraldine Camacho Alvarez, Johann Alexis Chávez García, Yoisdel Castillo Alvarez and Reinier Jiménez Borges
Recycling 2025, 10(5), 190; https://doi.org/10.3390/recycling10050190 - 10 Oct 2025
Abstract
The agro-industry is among the largest methane emitters, posing a critical challenge for sustainability. In rural areas, producers lack effective technologies to manage daily organic waste. Anaerobic digestion (AD) offers a circular pathway by converting waste into biogas and biofertilizers; however, its adoption [...] Read more.
The agro-industry is among the largest methane emitters, posing a critical challenge for sustainability. In rural areas, producers lack effective technologies to manage daily organic waste. Anaerobic digestion (AD) offers a circular pathway by converting waste into biogas and biofertilizers; however, its adoption is limited by inappropriate designs and insufficient operational control. Theoretical-applied research addresses these barriers by improving the design and operation of small-scale biodigesters, elevating pH and Electrical Conductivity (EC) from passive indicators to first-order control variables. Based on the design of a compact biodigester previously validated in the Chillón Valley and replicated in Huaycán under a utility model patent process (INDECOPI, Exp. 001087-2025/DIN), a stoichiometric NaHCO3 strategy with joint pH–EC monitoring was formalized, defining operational windows (pH 6.92–6.97; EC 6200–6300 μ S/cm and dose–response curves (0.3–0.4 kg/day for 3–4 day) to buffer VFA shocks and preserve methanogenic ionic strength. The system achieved stable productions of 370–462 L/day, surpassing the theoretical potential of 352.88 L/day calculated by Buswell’s equation. A multivariable predictive model (linear, quadratic, interaction terms pH × EC, temperature, and loading rate) was developed and validated with field data: R2 = 0.78; MAPE = 2.7%; MAE = 11.2 L/day; RMSE = 13.8 L/day; r = 0.89; residuals normally distributed (Shapiro–Wilk p = 0.79). The proposed approach enables daily decision-making in low-instrumentation environments and provides a replicable and scalable pathway for the safe valorization of organic waste in rural areas. The design consolidates the shift from reactive to proactive and co-optimized pH–EC control, laying the foundation not only for standardized protocols and training in rural systems but also for improved environmental sustainability. Full article
Show Figures

Figure 1

18 pages, 542 KB  
Review
Practical Considerations for the Diagnosis and Management of Isovaleryl-CoA-Dehydrogenase Deficiency (Isovaleric Acidemia): Systematic Search and Review and Expert Opinions
by Eva Thimm, Anselma Riederer, Jerry Vockley, Dries Dobbelaere, Monique Williams, Anita MacDonald, Katharina Dokoupil, Ulrich A. Schatz and Regina Ensenauer
Int. J. Neonatal Screen. 2025, 11(4), 92; https://doi.org/10.3390/ijns11040092 - 10 Oct 2025
Abstract
Isovaleric acidemia (IVA, OMIM 243500) is an inherited disorder of leucine metabolism caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD), leading to an accumulation of isovaleric acid and its derivates 3-hydroxyisovaleric acid, isovaleryl (C5)-carnitine and isovalerylglycine in body fluids. The clinical presentation is [...] Read more.
Isovaleric acidemia (IVA, OMIM 243500) is an inherited disorder of leucine metabolism caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD), leading to an accumulation of isovaleric acid and its derivates 3-hydroxyisovaleric acid, isovaleryl (C5)-carnitine and isovalerylglycine in body fluids. The clinical presentation is highly variable, ranging from life-threatening metabolic crises with metabolic acidosis and hyperammonemia to a clinically asymptomatic only biochemical phenotype. Newborn screening for IVA has been established in many countries. Treatment consists of a protein-restricted diet combined with supplementation of carnitine and/or glycine and emergency treatment in catabolic episodes. Still, evidence-based recommendations for the diagnosis and management of IVA patients with various phenotypes are lacking. Therefore, a systematic search and review of the literature was conducted to make suggestions for the care of patients with IVA based on both the available scientific evidence and consensus-derived expert conclusions. Based on a comprehensive set of literature data published between 1966 and 2024, 15 statements were phrased on the presentation, diagnosis, management, and outcome of IVA involving clinical, biochemical, and nutrition expertise. These statements can serve as a basis for more standardized care for IVA. Full article
22 pages, 471 KB  
Review
Azole-resistant Aspergillus fumigatus: Epidemiology, Diagnosis, and Treatment Considerations
by Anna Zubovskaia
J. Fungi 2025, 11(10), 731; https://doi.org/10.3390/jof11100731 - 10 Oct 2025
Abstract
Invasive aspergillosis is an opportunistic infection caused by the Aspergillus species. It is a significant cause of morbidity and mortality in susceptible populations, including recipients of bone marrow and solid organ transplants. Azole antifungals have remained the first-line treatment for invasive aspergillosis for [...] Read more.
Invasive aspergillosis is an opportunistic infection caused by the Aspergillus species. It is a significant cause of morbidity and mortality in susceptible populations, including recipients of bone marrow and solid organ transplants. Azole antifungals have remained the first-line treatment for invasive aspergillosis for a long time; however, the advance of azole resistance in Aspergillus fumigatus, driven predominantly by extensive commercial and agricultural use of azole fungicides and environmental exposure of susceptible populations to the resistant strains, renders the traditional therapeutic approaches less effective and results in further increase in mortality. The epidemiology, molecular mechanisms of azole resistance, diagnostic approaches, and clinical implications of azole resistance in Aspergillus fumigatus sensu stricto will be discussed in this article (for ease of comprehension, the rest of this article will refer to A. fumigatus sensu stricto as A. fumigatus). Full article
13 pages, 760 KB  
Article
Computed Tomography Volumetric Measurements of Adrenal Glands in 26 Dogs Under One Year of Age: A Retrospective Study
by Julia Topmöller, Johanna Rieder, Sebastian Meller, Kerstin von Pückler, Holger Volk and Kristina Merhof
Vet. Sci. 2025, 12(10), 974; https://doi.org/10.3390/vetsci12100974 - 10 Oct 2025
Abstract
Limited data exist regarding the size and volume of adrenal glands in puppies; therefore, the present research aims to describe volumetric and traditional measurements of adrenal glands in computed tomography (CT) images of 26 dogs under 1 year of age. Using OsiriX® [...] Read more.
Limited data exist regarding the size and volume of adrenal glands in puppies; therefore, the present research aims to describe volumetric and traditional measurements of adrenal glands in computed tomography (CT) images of 26 dogs under 1 year of age. Using OsiriX®MD v9.0.1, the adrenal volume as well as adrenal length, and the height and width of the cranial and caudal poles were documented. The results were compared with groups based on age, weight at the time of examination, and the dogs’ adult size when patients were clinically re-evaluated after more than 12 months of age. The mean adrenal gland volumes were 0.50 cm3 for the left (range 0.08–1.29 cm3) and 0.41 cm3 for the right (range 0.03–1.10 cm3) adrenal gland. The results showed that older puppies had larger adrenal glands, although the difference did not reach statistical significance. The volume of the adrenal glands correlated positively with body weight and the patients’ adult size. The findings highlight the diagnostic potential of CT-based adrenal volumetry and two-dimensional measurements and support their use in refining reference values for young dogs. The strong correlation between adrenal size and body weight emphasizes the importance of weight-adjusted interpretation in clinical settings. Full article
(This article belongs to the Section Veterinary Internal Medicine)
25 pages, 3690 KB  
Article
Quantification and Validation of Measurement Uncertainty in the ISO 8192:2007 Toxicity Assessment Method: A Comparative Analysis of GUM and Monte Carlo Simulation
by Bettina Neunteufel and Dirk Muschalla
Toxics 2025, 13(10), 857; https://doi.org/10.3390/toxics13100857 - 10 Oct 2025
Abstract
Reliable toxicity assessments are essential for protecting biological processes in wastewater treatment plants (WWTPs). This study focuses on quantifying the measurement uncertainty of the ISO 8192:2007 method, which determines the inhibition of oxygen consumption in activated sludge. Using the GUM guideline and Monte [...] Read more.
Reliable toxicity assessments are essential for protecting biological processes in wastewater treatment plants (WWTPs). This study focuses on quantifying the measurement uncertainty of the ISO 8192:2007 method, which determines the inhibition of oxygen consumption in activated sludge. Using the GUM guideline and Monte Carlo Simulation (MCS), up to 29 uncertainty contributions were evaluated in terms of oxygen consumption rate and percentage inhibition. The results reveal that temperature tolerance, measurement interval, and oxygen probe accuracy are dominant contributors, accounting for over 90% of the total uncertainty. The GUM results for oxygen consumption rates were validated by Monte Carlo Simulation, confirming their reliability. The percentage inhibitions showed asymmetric distributions and were underestimated by the GUM method, especially at lower toxicant concentrations. This highlights the necessity of simulation-based approaches for asymmetric systems. Notably, the consideration of correlations in the GUM analysis had minimal impact on outcomes. The findings emphasize the need for the precise recording of measurement time intervals, temperature control, the regular calibration of oxygen probes, and repeat measurements at low toxicant concentrations. Overall, this study enhances the robustness of ISO 8192:2007-based toxicity testing and provides practical guidance for reducing measurement uncertainty. Full article
Show Figures

Graphical abstract

15 pages, 5712 KB  
Article
Towards a Twisted Atom Laser: Cold Atoms Released from Helical Optical Tube Potentials
by Amine Jaouadi, Andreas Lyras and Vasileios E. Lembessis
Photonics 2025, 12(10), 999; https://doi.org/10.3390/photonics12100999 - 10 Oct 2025
Abstract
We study the quantum dynamics of cold atoms initially confined in a helical optical tube (HOT) and subsequently released into free space. This helicoidal potential, engineered via structured light fields with orbital angular momentum, imposes a twisted geometry on the atomic ensemble during [...] Read more.
We study the quantum dynamics of cold atoms initially confined in a helical optical tube (HOT) and subsequently released into free space. This helicoidal potential, engineered via structured light fields with orbital angular momentum, imposes a twisted geometry on the atomic ensemble during confinement. We examine how this geometry shapes the initial quantum state—particularly its spatial localization and phase structure—and how these features influence the subsequent free evolution. Our analysis reveals that the overall confinement geometry supports the formation of spatially coherent, structured wavepackets, paving the way for the realization of twisted Bose–Einstein condensates and directed atom lasers. The results are of particular interest for applications in quantum technologies, such as coherent atom beam shaping, matter-wave interferometry, and guided transport of quantum matter. Full article
13 pages, 2337 KB  
Article
Underwater Sphere Classification Using AOTF-Based Multispectral LiDAR
by Yukai Ma, Hao Zhang, Rui Wang, Fashuai Li, Tingting He, Boyu Liu, Yicheng Wang and Fei Han
Photonics 2025, 12(10), 998; https://doi.org/10.3390/photonics12100998 - 10 Oct 2025
Abstract
Multispectral LiDAR (MSL) systems offer a significant advantage by actively capturing both spatial and spectral information. These systems offer significant promise in supporting the comprehensive analysis and precise classification of underwater targets. In this study, we build an MSL system based on an [...] Read more.
Multispectral LiDAR (MSL) systems offer a significant advantage by actively capturing both spatial and spectral information. These systems offer significant promise in supporting the comprehensive analysis and precise classification of underwater targets. In this study, we build an MSL system based on an acousto-optic tunable filter (AOTF) to investigate the feasibility of underwater sphere classification. The MSL prototype features a spectral resolution of 20 nm and 13 spectral channels, covering a range from 560 to 800 nm. Laboratory-based experiments were conducted to evaluate the accuracy of range measurements and the classification performance of the system. The spectral curves of nine distinct spheres acquired by the MSL were utilized for classification using a support vector machine (SVM). The experimental results indicate that classification using multispectral data yields a higher accuracy and Kappa coefficient. Finally, the point cloud acquired from scanning experiments further validated the MSL system’s performance. This finding preliminarily validates the feasibility of multispectral LiDAR for classifying submerged spherical targets. Full article
(This article belongs to the Special Issue Technologies and Applications of Optical Imaging)
Show Figures

Figure 1

19 pages, 975 KB  
Article
Hybrid Solar Photoelectro-Fenton and Ozone Processes for the Sustainable Removal of COVID-19 Pharmaceutical Contaminants
by Sonia Herrera-Chávez, Martin Pacheco-Álvarez, Luis A. Godínez, Enric Brillas and Juan M. Peralta-Hernández
Processes 2025, 13(10), 3234; https://doi.org/10.3390/pr13103234 - 10 Oct 2025
Abstract
This study explores a hybrid advanced electrochemical oxidation process (EAOP) intensified by solar irradiation and ozone for the treatment of wastewater containing COVID-19-related pharmaceuticals. Pilot-scale trials were performed in a 30 L compound parabolic collector (CPC)-type photoreactor with a boron-doped diamond (BDD–BDD) electrode [...] Read more.
This study explores a hybrid advanced electrochemical oxidation process (EAOP) intensified by solar irradiation and ozone for the treatment of wastewater containing COVID-19-related pharmaceuticals. Pilot-scale trials were performed in a 30 L compound parabolic collector (CPC)-type photoreactor with a boron-doped diamond (BDD–BDD) electrode configuration. Under optimal conditions (50 mg L−1 paracetamol, 0.05 M Na2SO4, 0.50 mM Fe2+, pH 3.0, and 60 mA cm−2), the solar photoelectro-Fenton (SPEF) process achieved 78% chemical oxygen demand (COD) reduction within 90 min, with catechol and phenol detected as the main aromatic intermediates. When applied to a four-drug mixture (dexamethasone, paracetamol, amoxicillin, and azithromycin), the solar photoelectro-Fenton (SPEF–ozone (O3)) system reached 60% degradation and 41% COD removal under solar conditions. The results highlight the synergistic effect of ozone and solar energy in enhancing the electrochemical oxidation process (EAOP) performance and demonstrate the potential of these processes for scalable and sustainable removal of pharmaceutical contaminants from wastewater. Full article
19 pages, 7344 KB  
Perspective
Cardiomyopathies: Temporal Review and Genetic Determination
by Gaetano Thiene, Stefania Rizzo and Cristina Basso
Biomedicines 2025, 13(10), 2470; https://doi.org/10.3390/biomedicines13102470 - 10 Oct 2025
Abstract
Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with dysfunction, with or without a structural substrate. They are frequently genetically determined. The dysfunction may be mechanical, both of the systole and diastole, or electrical, including arrhythmias or conduction disorders. Originally, [...] Read more.
Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with dysfunction, with or without a structural substrate. They are frequently genetically determined. The dysfunction may be mechanical, both of the systole and diastole, or electrical, including arrhythmias or conduction disorders. Originally, only dilated, hypertrophic, restrictive–obliterative and arrhythmogenic dysfunctions were considered cardiomyopathies. Nowadays, since dysfunction can also be electric, disorders affected by electrical dysfunction without a structural substrate can be regarded as cardiomyopathies as well. This is the case of channellopathies and ryanodine receptors. This paper is a review of the history of cardiomyopathies, including the issues of their classification and nomination, genetic background and gene therapy. Full article
(This article belongs to the Special Issue Genetically Determined Cardiovascular Disease)
Show Figures

Figure 1

17 pages, 1058 KB  
Article
Collagen Hydrolysate–Cranberry Mixture as a Functional Additive in Sausages
by Yasin Uzakov, Aziza Aitbayeva, Madina Kaldarbekova, Madina Kozhakhiyeva, Arsen Tortay and Kadyrzhan Makangali
Processes 2025, 13(10), 3233; https://doi.org/10.3390/pr13103233 - 10 Oct 2025
Abstract
Consumers increasingly seek clean-label meat products with improved nutrition and stability. We evaluated a collagen hydrolysate–cranberry mixture (CH-CR) as a functional additive in cooked sausages. Two formulations—control and CH-CR—were assessed for fatty acid profile; lipid and protein oxidation during storage; antioxidant capacity ferric-reducing [...] Read more.
Consumers increasingly seek clean-label meat products with improved nutrition and stability. We evaluated a collagen hydrolysate–cranberry mixture (CH-CR) as a functional additive in cooked sausages. Two formulations—control and CH-CR—were assessed for fatty acid profile; lipid and protein oxidation during storage; antioxidant capacity ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and half-maximal inhibitory concentration (IC50); amino acid composition; and instrumental color. Relative to the control, CH-CR produced a more favorable lipid profile: lower saturated fatty acids (SFAs) 23.9% vs. 28.0%, higher monounsaturated fatty acids (MUFAs) 53.2% vs. 49.3%, slightly higher polyunsaturated fatty acids (PUFAs) 23.3% vs. 22.7%, a higher PUFA/SFA ratio of 0.97 vs. 0.81, and a lower omega-6/omega-3 (n-6/n-3) ratio of 13.5 vs. 27.1, driven by higher alpha-linolenic acid (ALA) 1.6% vs. 0.8%, with trans fats <0.1%. Storage studies showed attenuated oxidation in CH-CR: lower peroxide value (PV) at day 10 8.1 ± 0.4 vs. 9.8 ± 0.5 meq/kg and lower thiobarbituric acid-reactive substances (TBARS) at day 6 0.042 ± 0.004 vs. 0.055 ± 0.006 mg MDA/kg and day 10 0.156 ± 0.016 vs. 0.590 ± 0.041 mg MDA/kg); the acid value at day 10 was similar. Antioxidant capacity increased with CH-CR FRAP 30.5 mg gallic acid equivalents (GAE)/g vs. not detected; DPPH inhibition was 29.88% vs. 10.23%; IC50 56.22 vs. 149.51 µg/mL. The amino acid profile reflected collagen incorporation—higher glycine+proline+hydroxyproline 2.37 vs. 1.38 g/100 g and a modest rise in indispensable amino acids (IAAs) 5.72 vs. 5.42 g/100 g, increasing the IAA/total amino acid (TAA) ratio to 0.411 vs. 0.380. CH-CR samples were lighter and retained redness better under light, with comparable overall color stability. Overall, CH-CR is a natural strategy to improve fatty acid quality and oxidative/color stability in sausages. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
19 pages, 2160 KB  
Article
AI-Driven Optimization for Efficient Public Bus Operations
by Cheng-Yu Ku, Chih-Yu Liu and Ting-Yuan Wu
Mathematics 2025, 13(20), 3249; https://doi.org/10.3390/math13203249 - 10 Oct 2025
Abstract
Public transport bus services often experience financial inefficiencies due to high operational costs and unbalanced service allocation. To address these challenges, this study presents a machine learning-based framework aimed at optimizing financial and operational performance in public bus systems. A dataset comprising 57 [...] Read more.
Public transport bus services often experience financial inefficiencies due to high operational costs and unbalanced service allocation. To address these challenges, this study presents a machine learning-based framework aimed at optimizing financial and operational performance in public bus systems. A dataset comprising 57 routes including cost, service, and ridership data was analyzed to identify key factors correlated with net revenue. These features were integrated into multiple predictive models, among which support vector regression (SVR) with a Gaussian kernel and Bayesian optimization achieved the highest accuracy (R2 = 0.99), indicating excellent generalization capability. Scenario simulations using the trained SVR model evaluated the effects of service and cost adjustments. Results showed that cutting personnel costs had the most significant effect on net income, followed by administrative and financial expenses. These findings highlight the importance of data-driven strategies such as route reallocation and workforce optimization. The proposed framework offers transit agencies a robust tool for improving efficiency and ensuring financial sustainability. Full article
34 pages, 2977 KB  
Article
Load Characteristic Analysis and Load Forecasting Method Considering Extreme Weather Conditions
by Mingyi Sun, Dai Cui, Chenyang Zhao, Shubo Hu, Jiayi Li, Yiran Li, Gengfeng Li and Yiheng Bian
Electronics 2025, 14(20), 3978; https://doi.org/10.3390/electronics14203978 - 10 Oct 2025
Abstract
In the context of climate change and energy transition, the growing frequency of extreme weather events threatens the safety and stability of power systems. Given the limitations of existing research on load characteristic analysis and load forecasting during extreme weather events, this paper [...] Read more.
In the context of climate change and energy transition, the growing frequency of extreme weather events threatens the safety and stability of power systems. Given the limitations of existing research on load characteristic analysis and load forecasting during extreme weather events, this paper proposes a load-integrated forecasting model that accounts for extreme weather. First, an improved power load clustering method is proposed, combining Kernel PCA for nonlinear dimensionality reduction and an enhanced k-means algorithm, enabling both qualitative analysis and quantitative representation of load characteristics under extreme weather. Second, an optimal combination forecasting model is developed, integrating improved SVM and enhanced LSTM networks. Building upon the improved power load clustering algorithm, a load-integrated forecasting model considering extreme weather is established. Finally, based on the proposed load-integrated forecasting model, a time-series production simulation model considering extreme weather is constructed to quantitatively analyze the power and electricity balance risks of the system. Case studies demonstrate that the proposed integrated forecasting model can effectively analyze load characteristics under extreme weather and achieve more accurate load forecasting, which can provide guidance for the planning and operation of new power systems under extreme weather conditions. Full article
Show Figures

Figure 1

28 pages, 1143 KB  
Article
Psychiatric Comorbidity, Functional Status, and Neuroinflammatory Pathways in Cancer Patients with and Without Type 2 Diabetes
by Ana-Maria Pâslaru, Iulian Bounegru, Drăguș Laurențiu and Anamaria Ciubară
Diseases 2025, 13(10), 335; https://doi.org/10.3390/diseases13100335 - 10 Oct 2025
Abstract
Background: Cancer, type 2 diabetes mellitus (T2DM), and psychiatric comorbidities such as depression and anxiety frequently coexist, with shared mechanisms involving systemic inflammation and neuroinflammatory pathways. Understanding these interactions is critical for improving multidisciplinary oncological care. Methods: We conducted a monocentric [...] Read more.
Background: Cancer, type 2 diabetes mellitus (T2DM), and psychiatric comorbidities such as depression and anxiety frequently coexist, with shared mechanisms involving systemic inflammation and neuroinflammatory pathways. Understanding these interactions is critical for improving multidisciplinary oncological care. Methods: We conducted a monocentric cross-sectional study (n = 174). Beyond descriptive and univariate analyses, we fitted multivariable models: linear regressions (HADS-Anxiety/Depression) with robust HC3 errors and the predictors ECOG, T2DM, age, sex, and residence, and logistic regression for ECOG ≥ 3. We assessed collinearity and model fit, and performed sensitivity checks. Results: Psychiatric comorbidity was present in 58% of patients, while more than 80% of those with available HADS data (n = 136) exceeded the clinical threshold for anxiety or depression. No significant differences in ECOG status were observed between patients with and without T2DM (mean ECOG 2.5 in both groups). Higher ECOG remained positively associated with both HADS-Depression (adjusted β = 2.77, 95% CI −1.03–6.57, p = 0.149) and HADS-Anxiety (β = 1.62, 95% CI −2.76–6.00, p = 0.468), although not statistically significantly. T2DM showed no independent association with either outcome (Depression β = −2.91, p = 0.130; Anxiety β = −0.80, p = 0.595). In logistic regression, T2DM was not significantly associated with ECOG ≥ 3 (aOR = 3.58, 95% CI 0.23–56.66, p = 0.365). Conclusions: The psychiatric burden is high among Romanian cancer patients, irrespective of T2DM status, and strongly associated with functional decline. These findings support the relevance of a neuroinflammatory framework linking somatic comorbidities and psychological distress. Routine psychiatric screening, early intervention, and integration of psycho-oncology into multidisciplinary care are recommended. Future prospective studies should incorporate inflammatory biomarkers to better define underlying mechanisms. Full article
21 pages, 3347 KB  
Article
Dynamic Metabolome and Transcriptome Profiling Provide Molecular Insights into Floral Bud Differentiation in Michelia ‘Xin’
by Yan Chen, Dapeng Li, Xiaoling Ji, Caixian Liu and Chenfei Huang
Biology 2025, 14(10), 1383; https://doi.org/10.3390/biology14101383 - 10 Oct 2025
Abstract
Michelia ‘Xin’ is an evergreen rare ornamental tree species that undergoes FBD only once but blooms twice a year. However, the molecular mechanisms controlling its FBD process remain largely unknown. This study characterized the FBD process and delved into the key molecular regulatory [...] Read more.
Michelia ‘Xin’ is an evergreen rare ornamental tree species that undergoes FBD only once but blooms twice a year. However, the molecular mechanisms controlling its FBD process remain largely unknown. This study characterized the FBD process and delved into the key molecular regulatory mechanisms through transcriptomic and metabolomic analyses of developing flower buds. FBD in Michelia ‘Xin’ was characterized into five stages, including vegetative (T1), floral meristem transition (T2), tepal primordia differentiation (T3), stamen primordia differentiation (T4), and pistil primordia differentiation (T5). Analyses revealed a stage-specific metabolic and transcriptional regulation of FBD, with increasing numbers of differential metabolites and a decreasing number of DEGs from T1 to T5. Most phytohormone and transcription factor-related DEGs were highly induced from T2. The down-regulation of dormancy-associated protein homologs and CONSTANS-LIKE proteins associated with significant induction of flowering-promoting factor, CLAVATA3, trichome birefringence-like, and GRAVITROPIC IN THE LIGHT proteins was essential for the induction and reproductive organs’ development. Porphyrin biosynthesis, chlorophyll a-b binding proteins, DNA replication, flavonoid biosynthesis, and starch and sucrose metabolism were also significantly induced from T2. Key pivotal candidate genes were screened out. Our results provide fundamental resources for dissecting the molecular network regulating FBD and molecular-assisted flowering control in Michelia ‘Xin’. Full article
(This article belongs to the Special Issue The Potential of Genetics and Plant Breeding in Crop Improvement)
Show Figures

Figure 1

14 pages, 815 KB  
Article
Changes in Gonadal Sex Differentiation, Digestive Enzymes, and Growth-Related Hormone Contents in the Larval and Juvenile Black Scraper, Thamnaconus modestus
by Wengang Xu, Yan Liu, Jiulong Wang, Pei Yang, Yanqing Wu and Liming Liu
Biology 2025, 14(10), 1385; https://doi.org/10.3390/biology14101385 - 10 Oct 2025
Abstract
To understand the changes in gonadal sex differentiation, digestive enzyme activity, and growth-related hormone levels in the larval and juvenile black scraper, Thamnaconus modestus, continuous sampling was conducted from 0 to 91 days post-hatching (dph). 17β-estradiol (E2) and testosterone (T) levels, six [...] Read more.
To understand the changes in gonadal sex differentiation, digestive enzyme activity, and growth-related hormone levels in the larval and juvenile black scraper, Thamnaconus modestus, continuous sampling was conducted from 0 to 91 days post-hatching (dph). 17β-estradiol (E2) and testosterone (T) levels, six digestive enzymes, as well as T3, T4, GH, and IGF-I were detected. The results showed that oogonia or spermatogonia was observed at 60 dph. During the sex differentiation to female or male, both E2 and T levels significantly increased (p < 0.05), suggesting that E2 and T may induce the sex differentiation to female or male in T. modestus, respectively. The amylase activity from 0 to 35 dph showed a slow upward trend, which may be due to the transition from endogenous to exogenous nutrition at this time. From 12 to 25 dph, alkaline protease activity significantly decreased (p < 0.05), while acid protease levels significantly increased (p < 0.05), suggesting that as organs in the digestive system continue to develop, acid protease plays an important role. T3 and T4 could already be detected at 0 dph, and the T4 content was always much higher than T3 throughout the stages, indicating that T4 may play more important roles than T3. Additionally, the changes in IGF-I and GH content followed a trend of an initial increase, a subsequent decrease, and then an increase, ultimately showing an overall upward trend. These results indicate that T4, IGF-I, and GH play crucial roles in growth and development in the juvenile fish. In conclusion, the results of this study provide useful information for growth, artificial reproduction, and sex regulation in T. modestus. Full article
(This article belongs to the Section Evolutionary Biology)
28 pages, 1739 KB  
Article
An Integrated Isochrone-Based Geospatial Analysis of Mobility Policies and Vulnerability Hotspots in the Lazio Region, Italy
by Alessio D’Auria, Irina Di Ruocco and Antonio Gioia
ISPRS Int. J. Geo-Inf. 2025, 14(10), 395; https://doi.org/10.3390/ijgi14100395 - 10 Oct 2025
Abstract
Areas characterised by high ecological and cultural value are increasingly exposed to overtourism and intensifying land-use pressures, often exacerbated by mobility policies aimed at enhancing regional accessibility and promoting tourism. These dynamics create spatial tensions, particularly in environmentally sensitive areas such as those [...] Read more.
Areas characterised by high ecological and cultural value are increasingly exposed to overtourism and intensifying land-use pressures, often exacerbated by mobility policies aimed at enhancing regional accessibility and promoting tourism. These dynamics create spatial tensions, particularly in environmentally sensitive areas such as those within the Natura 2000 network and Sites of Community Importance (SCIs), where intensified visitor flows, and infrastructure expansion can disrupt the balance between conservation and development. This study offers a geospatial analysis of the current state (2024) of such dynamics in the Lazio Region (Italy), evaluating the effects of mobility strategies on ecological vulnerability and tourism pressure. By applying isochrone-based accessibility modelling, GIS buffer analysis, and spatial overlays, the research maps the intersection of accessibility, heritage value, and environmental sensitivity. The methodology enables the identification of critical zones where accessibility improvements coincide with heightened ecological risk and tourism-related stress. The original contribution of this work lies in its integrated spatial framework, which combines accessibility metrics with indicators of ecological and heritage significance to visualise and assess emerging risk areas. The Lazio Region, distinguished by its heterogeneous landscapes and ambitious mobility planning initiatives, constitutes a significant case study for examining how policy-driven improvements in transport infrastructure may inadvertently exacerbate spatial disparities and intensify ecological vulnerabilities in peripheral and sensitive territorial contexts. The findings support the formulation of adaptive, place-based policy recommendations aimed at mitigating the unintended consequences of accessibility-led tourism strategies. These include prioritising soft mobility, enhancing regulatory protection in high-risk zones, and fostering coordinated governance across sectors. Ultimately, the study advances a replicable methodology to inform sustainable territorial governance and balance tourism development with environmental preservation. Full article
30 pages, 1906 KB  
Review
Current Status and Future Prospects of Key Technologies in Variable-Rate Spray
by Yuxuan Jiao, Zhu Sun, Yongkui Jin, Longfei Cui, Xuemei Zhang, Shuai Wang, Songchao Zhang, Chun Chang, Suming Ding and Xinyu Xue
Agriculture 2025, 15(20), 2111; https://doi.org/10.3390/agriculture15202111 - 10 Oct 2025
Abstract
The traditional continuous, quantitative spraying technology ignores the severity of pests, diseases and grasses, spatial distribution and other differences, resulting in low effective utilization of pesticides, environmental pollution and other problems. Variable-rate spray technology has become an important development direction in the field [...] Read more.
The traditional continuous, quantitative spraying technology ignores the severity of pests, diseases and grasses, spatial distribution and other differences, resulting in low effective utilization of pesticides, environmental pollution and other problems. Variable-rate spray technology has become an important development direction in the field of precision agriculture by dynamically sensing crop canopy morphology, pest and disease distribution, and environmental parameters, adjusting the application amount in real time, and significantly improving pesticide utilization. In this study, we systematically review the core progress of variable-rate spray technology; focus on the technical system of information detection, spray volume model, and control system; analyze the current bottlenecks; and propose an optimization path to adapt to the complex agricultural conditions. At the level of information perception, LiDAR, machine vision, and multi-source sensor fusion technology constitute the main perception architecture, and infrared and ultrasonic sensors assist target recognition in complex scenes. In the construction of the spray volume model, models based on canopy volume, leaf area density, etc., are used to realize dynamic application decision by fusing equipment operating parameters, pest and disease levels, meteorological conditions, and so on. The control system takes the solenoid valve + PID control as the core program, and improves the response speed through PWM regulation and closed-loop feedback. The current technical bottlenecks are mainly concentrated in the sensor dynamic detection accuracy, model environmental adaptability, and the reliability of the execution parts. In the future, it is necessary to further promote anti-jamming multi-source heterogeneous sensor data fusion, multi-factor adaptive spray model development, lightweight edge computing deployment, and solenoid valve structural parameter optimization and other technical research, with a view to promoting the application of variable-rate spray technology to the field on a large scale and providing a theoretical reference and technological support for the green transformation of agriculture. Full article
14 pages, 1672 KB  
Article
Increasing Light Intensity Enhances Bacillus amyloliquefaciens PMB05-Mediated Plant Immunity and Improves Biocontrol of Bacterial Wilt
by Sin-Hua Li, Ai-Ting Li, Ming-Qiao Shi, Yi-Xuan Lu, Li-Ya Hong, Hsing-Ying Chung and Yi-Hsien Lin
Agriculture 2025, 15(20), 2110; https://doi.org/10.3390/agriculture15202110 - 10 Oct 2025
Abstract
Bacterial wilt is a highly destructive disease affecting a wide range of crops, with no effective chemical control methods currently available. Consequently, the development of microbial strategies for disease management has become increasingly important. Among these, plant immunity-intensifying microbes have demonstrated promising efficacy [...] Read more.
Bacterial wilt is a highly destructive disease affecting a wide range of crops, with no effective chemical control methods currently available. Consequently, the development of microbial strategies for disease management has become increasingly important. Among these, plant immunity-intensifying microbes have demonstrated promising efficacy in controlling bacterial wilt. However, the influence of environmental factors, particularly light intensity, on the effectiveness of these microbes remains unclear. Light intensity is a critical regulator of the photosynthetic system and plant biochemical functions, including defense responses. In this study, we specifically utilized Arabidopsis plants grown under distinct light intensities to systematically examine how light conditions affect the induction of plant immune responses and the occurrence of bacterial wilt. Our findings revealed that Arabidopsis grown under high light intensity exhibited significantly stronger immune responses and reduced disease severity, compared to plants grown under low light intensity. Further, application of Bacillus amyloliquefaciens PMB05, a plant immunity-intensifying strain, resulted in more pronounced immune signaling and disease control efficacy under high light conditions. Experiments using salicylic acid (SA)-deficient mutants demonstrated that disruption of the SA pathway abolished the enhanced suppression of bacterial wilt conferred by B. amyloliquefaciens PMB05 under high light intensity, indicating that the SA pathway is indispensable for PMB05-mediated disease resistance. Moreover, the validation experiments in tomato plants supported these results, with B. amyloliquefaciens PMB05 significantly reducing bacterial wilt development under high light intensity. Collectively, our study demonstrates that growing plants under varying light intensities provides critical insights into how environmental conditions modulate the effectiveness of plant immunity-intensifying microbes, offering a potential strategy for integrated disease management in crops. Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
23 pages, 13906 KB  
Article
Prediction of Favorable Sand Bodies in Fan Delta Deposits of the Second Member in Baikouquan Formation, X Area of Mahu Sag, Junggar Basin
by Jingyuan Wang, Xu Chen, Xiaohu Liu, Yuxuan Huang and Ao Su
Appl. Sci. 2025, 15(20), 10908; https://doi.org/10.3390/app152010908 - 10 Oct 2025
Abstract
The prediction of thin-bedded, favorable sand bodies within the Triassic Baikouquan Formation fan delta on the western slope of the Mahu Sag is challenging due to their strong spatial heterogeneity. To address this, we propose an integrated workflow that synergizes seismic sedimentology with [...] Read more.
The prediction of thin-bedded, favorable sand bodies within the Triassic Baikouquan Formation fan delta on the western slope of the Mahu Sag is challenging due to their strong spatial heterogeneity. To address this, we propose an integrated workflow that synergizes seismic sedimentology with geologically constrained seismic inversion. This study leverages well logging, core data, and 3D seismic surveys. Initially, seismic attribute analysis and stratal slicing were employed to delineate sedimentary microfacies, revealing that the fan delta front subfacies comprises subaqueous distributary channels, interdistributary bays, and distal bars. Subsequently, the planform distribution of these microfacies served as a critical constraint for the Seismic Waveform Indicative Inversion (SWII), effectively enhancing the resolution for thin sand body identification. The results demonstrate the following: (1). Two NW-SE trending subaqueous distributary channel systems, converging near the BAI65 well, form the primary reservoirs. (2). The SWII, optimized by our workflow, successfully predicts high-quality sand bodies with a cumulative area of 159.2 km2, primarily located in the MAXI1, AIHU10, and AICAN1 well areas, as well as west of the MA18 well. This study highlights the value of integrating sedimentary facies boundaries as a geological constraint in seismic inversion, providing a more reliable method for predicting heterogeneous thin sand bodies and delineating future exploration targets in the Mahu Sag. Full article
19 pages, 1339 KB  
Article
Differential Modulation of Maize Silage Odor: Lactiplantibacillus plantarum vs. Lactiplantibacillus buchneri Drive Volatile Compound Change via Strain-Specific Fermentation
by Shuyuan Xue, Jianfeng Wang, Jing Yang, Yunjie Li, Jian He, Jiyu Han, Hongyan Xu, Xun Zhu and Nasi Ai
Agriculture 2025, 15(20), 2109; https://doi.org/10.3390/agriculture15202109 - 10 Oct 2025
Abstract
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus [...] Read more.
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus plantarum and Lentilactobacillus buchneri modulates the VOC profile and odor of WPMS after 90 days. VOCs were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry (HS-SPME-GC-MS). Key VOCs were screened using the variable importance in projection (VIP) and substantiated by relative odor activity values (rOAV) and odor descriptions. A total of 82 compounds were identified, including 22 esters, 19 alcohols, 3 acids, 9 aldehydes, 2 ethers, 6 hydrocarbons, 4 ketones, 10 phenols, and 8 terpenoids. L. plantarum enhanced green/fruity odors while strain L. buchneri significantly reduced undesirable phenolic and aldehydic compounds. Six key VOCs influencing the odor of WPMS were selected: 4-ethyl-2-methoxyphenol and benzaldehyde, which contribute smoky, bacon, and bitter almond aromas, and (E)-3-hexen-1-ol, benzyl alcohol, (E, E)-2,4-heptadienal and methyl salicylate, which impart green, fruity, and nutty aromas. These findings highlight the effects and contributions of various strain additives on VOCs in WPMS, providing new theoretical insights for regulating the flavor profile of WPMS. Full article
(This article belongs to the Section Farm Animal Production)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop