- Article
MFE-YOLO: A Multi-Scale Feature Enhanced Network for PCB Defect Detection with Cross-Group Attention and FIoU Loss
- Ruohai Di,
- Hao Fan and
- Ruoyu Qian
- + 4 authors
The detection of defects in Printed Circuit Boards (PCBs) is a critical yet challenging task in industrial quality control, characterized by the prevalence of small targets and complex backgrounds. While deep learning models like YOLOv5 have shown promise, they often lack the ability to quantify predictive uncertainty, leading to overconfident errors in challenging scenarios—a major source of false alarms and reduced reliability in automated manufacturing inspection lines. From a Bayesian perspective, this overconfidence signifies a failure in probabilistic calibration, which is crucial for trustworthy automated inspection. To address this, we propose MFE-YOLO, a Bayesian-enhanced detection framework built upon YOLOv5 that systematically integrates uncertainty-aware mechanisms to improve both accuracy and operational reliability in real-world settings. First, we construct a multi-background PCB defect dataset with diverse substrate colors and shapes, enhancing the model’s ability to generalize beyond the single-background bias of existing data. Second, we integrate the Convolutional Block Attention Module (CBAM), reinterpreted through a Bayesian lens as a feature-wise uncertainty weighting mechanism, to suppress background interference and amplify salient defect features. Third, we propose a novel FIoU loss function, redesigned within a probabilistic framework to improve bounding box regression accuracy and implicitly capture localization uncertainty, particularly for small defects. Extensive experiments demonstrate that MFE-YOLO achieves state-of-the-art performance, with mAP@0.5 and mAP@0.5:0.95 values of 93.9% and 59.6%, respectively, outperforming existing detectors, including YOLOv8 and EfficientDet. More importantly, the proposed framework yields better-calibrated confidence scores, significantly reducing false alarms and enabling more reliable human-in-the-loop verification. This work provides a deployable, uncertainty-aware solution for high-throughput PCB inspection, advancing toward trustworthy and efficient quality control in modern manufacturing environments.
Entropy,
2 February 2026



