- Article
Composite Reinforced Expanded Clay and Basalt Fiber Concrete for Floating Platforms
- Alexey N. Beskopylny,
- Sergey A. Stel′makh and
- Evgenii M. Shcherban′
- + 5 authors
Currently, in hydrotechnical engineering, such as oil and gas platform construction, floating docks, and other floating structures, the need to develop new lightweight composite building materials is becoming an important problem. Expanded clay concrete (ECC) is the most common lightweight concrete option for floating structures. The aim of this study is to develop effective composite ECC with improved properties and a coefficient of structural quality (CCQ). To improve the properties of ECC, the following formulation and technological techniques were additionally applied: reinforcement of lightweight expanded clay aggregate by pre-treatment in cement paste (CP-LECA) with the addition of microsilica (MS) and dispersed reinforcement with basalt fiber (BF). An experimental study examined the effect of the proposed formulation and technological techniques on the density and cone slump of fresh ECC and the density, compressive and flexural strength, and water absorption of hardened ECC. A SEM analysis was conducted. The optimal parameters for LECA pretreatment were determined. These parameters are achieved by treating LECA grains in a cement paste with 10% MS and using dispersed reinforcement parameters of 0.75% BF. The best combination of CP-LECA10MS-0.75BF provides increases in compressive and flexural strength of up to 50% and 61.7%, respectively, and a reduction in water absorption of up to 32.8%. The CCQ increases to 44.4%. If the ECC meets the design requirements, it can be used in hydraulic engineering for floating structures.
J. Compos. Sci.,
13 December 2025


