- Article
Assessment of Offshore Solar Photovoltaic and Wind Energy Resources in the Sea Area of China
- Yanan Wu,
- Yang Bai and
- He Wu
Against the backdrop of China’s “dual carbon” targets, the energy transition is accelerating. However, the expansion of onshore renewables is often constrained by land scarcity. Offshore areas thus present a promising alternative. In this study, high-resolution wind field data from 1995 to 2024 were generated using the WRF model driven by ERA5 reanalysis, enabling a 30-year spatiotemporal assessment of offshore wind power density (at 160 m hub height) and photovoltaic potential (PVP) across China’s four major seas—the Bohai Sea, Yellow Sea, East China Sea, and South China Sea. The results show clear spatial and seasonal patterns: solar PV potential decreases from south to north, with the South China Sea exhibiting the highest and most stable annual average PVP (16–18%) and summer peaks exceeding 25%. Wind energy resources are spatially heterogeneous; the East China Sea and Taiwan Strait are identified as the richest zones, where wind power density frequently reaches 800–1800 W/m2 during autumn and winter. Importantly, a pronounced seasonal complementarity is observed: wind peaks in autumn/winter while solar peaks in spring/summer at representative coastal sites. This study provides, for the first time, a long-term, integrated assessment of both offshore wind and solar resources over all four Chinese seas, offering quantitative data and a scientific basis for differentiated marine energy planning, optimized siting, and the design of wind–solar hybrid systems.
Energies,
16 January 2026



