Advancing Open Science
Supporting academic communities
since 1996
 
33 pages, 6714 KB  
Article
Spatiotemporal Characterization of Atmospheric Emissions from Heavy-Duty Diesel Trucks on Port-Connected Expressways in Shanghai
by Qifeng Yu, Lingguang Wang, Siyu Pan, Mengran Chen, Kun Qiu and Xiqun Huang
Atmosphere 2025, 16(10), 1183; https://doi.org/10.3390/atmos16101183 (registering DOI) - 14 Oct 2025
Abstract
Heavy-duty diesel trucks (HDDTs) are recognized as significant sources of air pollutants and greenhouse gases (GHGs) along freight corridors in port cities. Despite their impact, few studies have provided detailed spatiotemporal insights into their emissions within port-adjacent highway systems. This study presents a [...] Read more.
Heavy-duty diesel trucks (HDDTs) are recognized as significant sources of air pollutants and greenhouse gases (GHGs) along freight corridors in port cities. Despite their impact, few studies have provided detailed spatiotemporal insights into their emissions within port-adjacent highway systems. This study presents a high-resolution, hourly emission inventory at the road-segment level for six major expressways in Shanghai, one of China’s leading port cities. The emission estimates are derived using a locally adapted COPERT V model, calibrated with HDDT GPS trajectory data and detailed road network information from OpenStreetMap. The inventory quantifies emissions of CO2, NOx, CO, PM, and VOCs, highlighting distinct temporal and spatial variation patterns. Weekday emissions consistently exceed those of weekends, with three prominent traffic-related peaks occurring between 5:00–7:00, 10:00–12:00, and 14:00–16:00. Spatial analysis identifies the G1503 and S20 expressways as major emission corridors, with S20 exhibiting particularly high emission intensity relative to its length. Combined spatiotemporal patterns reveal that weekday emission hotspots are more concentrated, reflecting typical freight activity cycles such as morning dispatch and afternoon return. The findings provide a scientific basis for formulating more precise emission control measures targeting HDDT operations in urban port environments. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
24 pages, 3661 KB  
Article
Real-Time Occluded Target Detection and Collaborative Tracking Method for UAVs
by Yandi Ai, Ruolong Li, Chaoqian Xiang and Xin Liang
Electronics 2025, 14(20), 4034; https://doi.org/10.3390/electronics14204034 (registering DOI) - 14 Oct 2025
Abstract
To address the failure of unmanned aerial vehicle (UAV) target tracking caused by occlusion and limited field of view in dense low-altitude obstacle environments, this paper proposes a novel framework integrating occlusion-aware modeling and multi-UAV collaboration. A lightweight tracking model based on the [...] Read more.
To address the failure of unmanned aerial vehicle (UAV) target tracking caused by occlusion and limited field of view in dense low-altitude obstacle environments, this paper proposes a novel framework integrating occlusion-aware modeling and multi-UAV collaboration. A lightweight tracking model based on the Mamba backbone is developed, incorporating a Dilated Wavelet Receptive Field Enhancement Module (DWRFEM) to fuse multi-scale contextual features, significantly mitigating contour fragmentation and feature degradation under severe occlusion. A dual-branch feature optimization architecture is designed, combining the Distilled Tanh Activation with Context (DiTAC) activation function and Kolmogorov–Arnold Network (KAN) bottleneck layers to enhance discriminative feature representation. To overcome the limitations of single-UAV perception, a multi-UAV cooperative system is established. Ray intersection is employed to reduce localization uncertainty, while spherical sampling viewpoints are dynamically generated based on obstacle density. Safe trajectory planning is achieved using a Crested Porcupine Optimizer (CPO). Experiments on the Multi-Drone Multi-Target Tracking (MDMT) dataset demonstrate that the model achieves 84.1% average precision (AP) at 95 Frames Per Second (FPS), striking a favorable balance between speed and accuracy, making it suitable for edge deployment. Field tests with three collaborative UAVs show sustained target coverage in complex environments, outperforming traditional single-UAV approaches. This study provides a systematic solution for robust tracking in challenging low-altitude scenarios. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications, 2nd Edition)
Show Figures

Figure 1

33 pages, 2180 KB  
Review
Mechanistic Insight into Phenolic Compounds in Mitigating Diabetic Complications Induced by Advanced Glycation End Products
by Wajid Zaman and Adnan Amin
Curr. Issues Mol. Biol. 2025, 47(10), 841; https://doi.org/10.3390/cimb47100841 (registering DOI) - 14 Oct 2025
Abstract
Diabetes mellitus is a chronic metabolic disorder that facilitates the formation of advanced glycation end products (AGEs), which contribute to oxidative stress, inflammation, and vascular damage, causing complications including nephropathy, neuropathy, and atherosclerosis. AGEs are primarily synthesized through the Maillard reaction, alongside various [...] Read more.
Diabetes mellitus is a chronic metabolic disorder that facilitates the formation of advanced glycation end products (AGEs), which contribute to oxidative stress, inflammation, and vascular damage, causing complications including nephropathy, neuropathy, and atherosclerosis. AGEs are primarily synthesized through the Maillard reaction, alongside various signaling pathways. Activation of the receptor for AGE (RAGE) triggers inflammatory signaling pathway cascades, exacerbating tissue damage. Phenolic compounds found in plant-based foods, such as quercetin and resveratrol, have shown promise in counteracting AGE-related complications through their antioxidant and anti-inflammatory effects that inhibit AGE formation, reduce oxidative stress, and modulate RAGE signaling, while also enhancing insulin sensitivity and improving glucose homeostasis. Indeed, quercetin can help prevent AGE accumulation and reduce diabetic nephropathy, while resveratrol activates the SIRT1 pathway, improving insulin sensitivity. This review examines the mechanisms through which phenolic compounds mitigate AGE-induced diabetic complications, using computational, in vitro, preclinical, and clinical evidence. This review also explores the synergistic effects of these compounds with conventional antidiabetic drugs, addresses bioavailability challenges, and suggests future research directions. Overall, this review offers a comprehensive understanding of the role of phenolic compounds in managing diabetes, underscoring their potential as complementary agents in diabetes therapy and developing more effective natural treatments. Full article
Show Figures

Figure 1

21 pages, 1066 KB  
Article
Analysis of the Effects of CSR and Compliance Programs on Organizational Reputation
by Víctor Hugo Arredondo-Méndez, Yaromir Muñoz-Molina, Lorena Para-González and Carlos Mascaraque-Ramírez
Systems 2025, 13(10), 905; https://doi.org/10.3390/systems13100905 (registering DOI) - 14 Oct 2025
Abstract
The present study undertakes an analytical investigation into the relationships between Corporate Social Responsibility (CSR), Compliance Programs, Reputational Risk Management, and Corporate Image. A survey was conducted among 154 senior professionals in companies across diverse sectors and sizes, using the Partial Least Squares [...] Read more.
The present study undertakes an analytical investigation into the relationships between Corporate Social Responsibility (CSR), Compliance Programs, Reputational Risk Management, and Corporate Image. A survey was conducted among 154 senior professionals in companies across diverse sectors and sizes, using the Partial Least Squares Structural Equation Modeling (PLS-SEM) methodology with the aid of SmartPLS 4.0 software. The findings indicate that CSR exerts a substantial and immediate influence on both the management of reputational risk and the establishment of a robust corporate image. Furthermore, it has been observed that the adoption of Compliance Programs is driven by CSR, which also contributes, albeit to a lesser extent, to the strengthening of the external perception of the company. Conversely, proactive management of reputational risk has been demonstrated to enhance regulatory compliance and positively impact corporate image. The alignment of corporate social responsibility (CSR) with compliance initiatives has been demonstrated to engender sustainable competitive advantages within challenging regulatory contexts. In conclusion, the present paper puts forward the suggestion of conducting longitudinal studies in order to observe the evolution of the relationships under discussion over time. Full article
Show Figures

Figure 1

13 pages, 848 KB  
Article
Epidemiology and Evolution of Bovine Viral Diarrhea Virus (BVDV) in Uruguay: A 10-Year Study
by Leticia Maya, Matias Castells, Caroline Silveira, Federico Giannitti, Ingryd Merchioratto, Maria Barrandeguy, Alejo Menchaca and Rodney Colina
Viruses 2025, 17(10), 1374; https://doi.org/10.3390/v17101374 (registering DOI) - 14 Oct 2025
Abstract
Bovine viral diarrhea virus (BVDV) is a pathogen of worldwide economic importance. In Uruguay, BVDV is endemic, with seroprevalence >80% at the farm level. This study analyzed 912 samples collected from January 2018 to October 2024 by reverse transcription PCR and sequencing, from [...] Read more.
Bovine viral diarrhea virus (BVDV) is a pathogen of worldwide economic importance. In Uruguay, BVDV is endemic, with seroprevalence >80% at the farm level. This study analyzed 912 samples collected from January 2018 to October 2024 by reverse transcription PCR and sequencing, from calves with diarrhea, aborted fetuses, heifers with a history of abortions, and animals exhibiting symptoms of Mucosal Disease. This work summarizes ten years (2014–2024) of molecular epidemiology and evolution of BVDV. Analysis of the BVDV 5′UTR/Npro genomic region revealed that the BVDV-1a, 1e, 1i, and 2b subtypes circulate in Uruguay. BVDV-1a remains the most prevalent subtype, followed by BVDV-2b, whose prevalence has been increasing. Our previous studies revealed that BVDV-1a showed geographical diversification in Uruguay. In this work, evolutionary studies conducted with Npro genomic region showed that BVDV-2b is evolving at a substitution rate of 6.09 × 10−4 substitutions/site/year and has been introduced from Brazil in six separate events between 1870 and 1928, showing no geographical diversification. This work demonstrates that BVDV-1a and BVDV-2b are evolving differently in Uruguay. This evolutionary divergence is notable when comparing patterns observed in other countries where these subtypes circulate. Our findings provide crucial knowledge that should be considered for developing effective BVDV control measures in Uruguay. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Viruses and Other Pestiviruses)
Show Figures

Figure 1

22 pages, 3198 KB  
Article
Benzo[d]imidazole–Naphthalen-Arylmethanone Regioisomers as CB1 Ligands: Evaluation of Agonism via an Indirect Cytotoxicity-Based Approach
by Analia Young Hwa Cho, Renato Burgos Ravanal, Valeria Zuñiga Salazar, Marco Mellado, Marcos Lorca, David Pessoa-Mahana, Jaime Mella, Germán Günther Sapunar and Javier Romero-Parra
Int. J. Mol. Sci. 2025, 26(20), 9986; https://doi.org/10.3390/ijms26209986 (registering DOI) - 14 Oct 2025
Abstract
CB1 agonist compounds may be potential drug candidates for the treatment of gliomas, as they have been shown to inhibit tumor cell proliferation, induce apoptosis, and reduce angiogenesis in various preclinical models. Their ability to modulate the endocannabinoid system suggests a promising [...] Read more.
CB1 agonist compounds may be potential drug candidates for the treatment of gliomas, as they have been shown to inhibit tumor cell proliferation, induce apoptosis, and reduce angiogenesis in various preclinical models. Their ability to modulate the endocannabinoid system suggests a promising therapeutic approach for targeting glioma growth and progression. Herein, we report the design, synthesis, biological studies, and bioinformatics assays of novel benzo[d]imidazole–naphthalen-arylmethanone regioisomers with affinity for the CB1 receptor, as well as propose an indirect methodology to evaluate their presumed CB1 agonist activity. Compounds that showed a propensity for binding to the CB1 receptor were regioisomers 4d, 5b, 5e, 5f, and 5f′. Likewise, derivatives that displaced more than 50% of the radioligand [3H]CP-55940 at the CB1 receptor were subjected to in vitro viability experiments. Compounds 4d, 5b, 5e, and 5f′ showed toxicity against U87MG cells (malignant glioma) in a considerable percentage. Notably, compound 5f′ showed CB1 affinity, with a Ki of 2.12 µM, and was selectively toxic to U87MG cells, which highly express the CB1 receptor, while exhibiting no toxicity toward the healthy HEK293 cell line, which expresses both cannabinoid receptors at negligible levels. Docking studies at the CB1 orthosteric site indicate that 5f′ forms π-π interactions, a T-shaped interaction, and hydrogen bonding through the oxygen atom of the furan ring. Biologically, our experimental indirect model-based on a simple viability assay is supported by well-established evidence that activation of CB1 and CB2 receptors by agonists induces cell death and inhibits tumor cell growth. Structurally, we conclude that the presence of a furan ring at the 2-position of the benzo[d]imidazole core is beneficial for the development of new ligands with potential CB1 agonist activity. Full article
Show Figures

Graphical abstract

19 pages, 12678 KB  
Article
Relative Contributions of Soil and Litter Properties to Soil Microbial Community Variations During the Restoration of Larch Plantations to Mixed Forests
by Zilu Wang, Yiping Lin, Kefan Wang, Xin Fang, Nuo Li, Cong Shi and Fuchen Shi
Microorganisms 2025, 13(10), 2359; https://doi.org/10.3390/microorganisms13102359 (registering DOI) - 14 Oct 2025
Abstract
The ecological restoration process of larch plantations to mixed forests contributes to enhancing the stability and functionality of forest ecosystems, with soil microbes playing a crucial role in this process. To elucidate the changes in soil microbial communities during this transition and their [...] Read more.
The ecological restoration process of larch plantations to mixed forests contributes to enhancing the stability and functionality of forest ecosystems, with soil microbes playing a crucial role in this process. To elucidate the changes in soil microbial communities during this transition and their relationships with soil and litter properties, the study used 16S/ITS rRNA high-throughput sequencing to investigate the diversity and composition of soil bacterial and fungal communities at two soil depths across four restoration stages, and further quantified the relative contributions of soil and litter properties to variations in microbial community structure. The results indicated that bacterial and fungal α-diversity remained relatively stable in the topsoil but varied significantly across restoration stages in the subsoil (p<0.05), with the highest levels observed during the broadleaf species invasion stage. Fungal community structure demonstrated greater sensitivity to the restoration process, whereas bacterial communities showed stronger spatial dependency. Variance partitioning analysis revealed that soil properties were the main contributors to the variations of bacterial and fungal communities, accounting for 41% and 28% of the total variance, respectively. Fungal communities were more closely associated with litter properties than bacterial communities. Redundancy analysis combined with hierarchical partitioning further revealed that soil available phosphorus (AP) and total nitrogen (TN) were key factors explaining the variation in both bacterial and fungal communities. Additionally, litter total nitrogen (LTN) also emerged as an important factor affecting soil fungal communities. These findings provide critical microbiological evidence for accelerating the forest restoration in Northeast China through soil fertility management and regulation of litter inputs. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 994 KB  
Article
Bacteriophages Biocontrol of Kiwifruit Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae (Psa) in Two Seasons Under Field Conditions
by Paulina Sanhueza, Natalia Riquelme, Marcela Leon, Javiera Gaete Morales, Camila Prince, M. Fernanda Flores, Carolina Yañez, Italo F. Cuneo, Roberto Bastías and Ximena Besoain
Antibiotics 2025, 14(10), 1023; https://doi.org/10.3390/antibiotics14101023 (registering DOI) - 14 Oct 2025
Abstract
Background: Since 2008, the kiwifruit industry has been significantly impacted by Pseudomonas syringae pv. actinidiae (Psa), the agent responsible for bacterial canker in kiwifruit. Existing treatments, such as copper-based compounds and antibiotics, have faced challenges related to resistance and soil contamination. Phage therapy [...] Read more.
Background: Since 2008, the kiwifruit industry has been significantly impacted by Pseudomonas syringae pv. actinidiae (Psa), the agent responsible for bacterial canker in kiwifruit. Existing treatments, such as copper-based compounds and antibiotics, have faced challenges related to resistance and soil contamination. Phage therapy is a promising and safe alternative for controlling this pathogen. This study aimed to evaluate the use of a mixture of four isolated and characterized bacteriophages as potential biocontrol agents against Psa. Methods: Trials were conducted at two locations in Chile, where Psa presence was reported during the 2019/2020 and 2020/2021 seasons, with a focus on the spring stages. Different formulations were tested each season to evaluate possible improvements in effectiveness. Pseudomonas spp. isolates obtained from epiphyte populations were characterized using morphological, biochemical (LOPAT), and molecular techniques. Results: Field trials demonstrated that the phage mixture effectively reduced the damage associated with Psa on kiwi leaves, resulting in a decrease in the Pseudomonas spp. bacterial load (42.9% for Peumo and 25% for Linares) at both locations during the first season trials. This decrease is associated with a reduction in the incidence and severity of the disease in kiwi plants in the Peumo orchard. In both seasons, bacteriophages reduce Psa symptoms in treated kiwi plants compared to untreated controls, at least at one location and evaluation. In both orchards during the first season, bacteriophages also outperformed copper- and antibiotic-based treatments used by farmers. Bacteriophage therapy is eco-friendly and safe for both applicators and consumers. Full article
Show Figures

Figure 1

31 pages, 350 KB  
Editorial
Diaconia and Christian Social Practice in a Global Perspective: Concluding Synthesis of Emerging Topical Issues and Themes
by Johannes Eurich and Ignatius Swart
Religions 2025, 16(10), 1307; https://doi.org/10.3390/rel16101307 (registering DOI) - 14 Oct 2025
Abstract
Trust in politics and institutions, as well as the upholding of social cohesion, is presently under pressure globally [...] Full article
(This article belongs to the Special Issue Diaconia and Christian Social Practice in a Global Perspective)
25 pages, 3069 KB  
Article
DrSVision: A Machine Learning Tool for Cortical Region-Specific fNIRS Calibration Based on Cadaveric Head MRI
by Serhat Ilgaz Yöner, Mehmet Emin Aksoy, Hayrettin Can Südor, Kurtuluş İzzetoğlu, Baran Bozkurt and Alp Dinçer
Sensors 2025, 25(20), 6340; https://doi.org/10.3390/s25206340 (registering DOI) - 14 Oct 2025
Abstract
Functional Near-Infrared Spectroscopy is (fNIRS) a non-invasive neuroimaging technique that monitors cerebral hemodynamic responses by measuring near-infrared (NIR) light absorption caused by changes in oxygenated and deoxygenated hemoglobin concentrations. While fNIRS has been widely used in cognitive and clinical neuroscience, a key challenge [...] Read more.
Functional Near-Infrared Spectroscopy is (fNIRS) a non-invasive neuroimaging technique that monitors cerebral hemodynamic responses by measuring near-infrared (NIR) light absorption caused by changes in oxygenated and deoxygenated hemoglobin concentrations. While fNIRS has been widely used in cognitive and clinical neuroscience, a key challenge persists: the lack of practical tools required for calibrating source-detector separation (SDS) to maximize sensitivity at depth (SAD) for monitoring specific cortical regions of interest to neuroscience and neuroimaging studies. This study presents DrSVision version 1.0, a standalone software developed to address this limitation. Monte Carlo (MC) simulations were performed using segmented magnetic resonance imaging (MRI) data from eight cadaveric heads to realistically model light attenuation across anatomical layers. SAD of 10–20 mm with SDS of 19–39 mm was computed. The dataset was used to train a Gaussian Process Regression (GPR)-based machine learning (ML) model that recommends optimal SDS for achieving maximal sensitivity at targeted depths. The software operates independently of any third-party platforms and provides users with region-specific calibration outputs tailored for experimental goals, supporting more precise application of fNIRS. Future developments aim to incorporate subject-specific calibration using anatomical data and broaden support for diverse and personalized experimental setups. DrSVision represents a step forward in fNIRS experimentation. Full article
(This article belongs to the Special Issue Recent Innovations in Computational Imaging and Sensing)
Show Figures

Graphical abstract

9 pages, 2834 KB  
Article
Delayed Graft Function and Its Duration as Predictors of Medium-Term Kidney Transplant Outcomes: A Retrospective Cohort Study from an Eastern European Center
by Oana Antal, Tudor Moisoiu, Robert Simon, Alina Daciana Elec, Adriana Milena Muntean, Georgeta Horciag, Florina Maria Gabor Harosa, Vlad Pastor, Horia Iuga and Florin Ioan Elec
J. Clin. Med. 2025, 14(20), 7240; https://doi.org/10.3390/jcm14207240 (registering DOI) - 14 Oct 2025
Abstract
Background/Objectives: Delayed graft function (DGF) is a major complication after kidney transplantation, affecting graft and patient survival. Although well-studied in Western populations, data from Eastern Europe are limited, and the prognostic significance of DGF severity, particularly renal replacement therapy (RRT) duration, is not [...] Read more.
Background/Objectives: Delayed graft function (DGF) is a major complication after kidney transplantation, affecting graft and patient survival. Although well-studied in Western populations, data from Eastern Europe are limited, and the prognostic significance of DGF severity, particularly renal replacement therapy (RRT) duration, is not well-defined. Methods: We conducted a retrospective analysis of 479 adult recipients of brain-dead donor (DBD) kidney transplants at a high-volume transplant center in Romania (2017–2024). DGF was defined as the need for dialysis within seven days’ post-transplant. Baseline characteristics, graft function, and survival outcomes were compared between DGF and non-DGF groups. Kidney function was evaluated using the Estimated Glomerular Filtration Rate (eGFR). Patient and graft survival were assessed using Kaplan–Meier curves and log-rank tests. DGF severity was stratified by RRT duration (≤14 vs. >14 days). Results: DGF occurred in 28.8% of patients (adjusted 24%). Those with DGF had a higher Body Mass Index (BMI), greater comorbidity (Charlson Index, Estimated Post-Transplant Survival (EPTS) score), longer pre-transplant dialysis, and higher Kidney Donor Profile Index (KDPI) donor kidneys. DGF was associated with lower graft survival at one, three, and five years and reduced patient survival at three and five years. Longer RRT was associated with progressively worse outcomes, with the poorest prognosis in patients needing >14 days. Conclusions: Delayed graft function was significantly associated with reduced graft and patient survival. Prolonged DGF time was found to be predictive for poorer outcomes. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

23 pages, 4665 KB  
Article
Objective Parameterization of InVEST Habitat Quality Model Using Integrated PCA-SEM-Spatial Analysis: A Biotope Map-Based Framework
by Dong Uk Kim and Hye Yeon Yoon
Land 2025, 14(10), 2050; https://doi.org/10.3390/land14102050 (registering DOI) - 14 Oct 2025
Abstract
Current InVEST habitat quality assessments rely heavily on subjective expert judgment for parameter specification, introducing substantial uncertainty and limiting their regional applicability. To address this gap, we developed an objective, statistically rigorous framework for parameter derivation by integrating Principal Component Analysis (PCA), Structural [...] Read more.
Current InVEST habitat quality assessments rely heavily on subjective expert judgment for parameter specification, introducing substantial uncertainty and limiting their regional applicability. To address this gap, we developed an objective, statistically rigorous framework for parameter derivation by integrating Principal Component Analysis (PCA), Structural Equation Modeling (SEM), and spatial analysis, supported by high-resolution biotope mapping. The methodology was applied to Gochang-gun, South Korea, where nine threat factors were analyzed using empirical data from 6633 sampling points. PCA identified threat groupings, SEM quantified habitat–threat relationships for sensitivity derivation, and variogram analysis determined maximum influence distances, while 1:5000 scale biotope maps incorporating 14 ecological indicators replaced conventional land cover classifications. These empirically derived parameters were directly incorporated into the InVEST Habitat Quality model, replacing default or expert-based values. As a result, the biotope-based InVEST HQ implementation achieved exceptional performance (R2 = 0.892) with crops emerging as the dominant threat factor (sensitivity = 1.000, weight = 34.1%). Compared to the land use/land cover (LULC)-based approach using conventional parameterization, the biotope–PCA–SEM model demonstrated higher predictive accuracy (AUC = 0.805 vs. 0.755), stronger correlations with independent conservation indicators (protected area correlation: 0.457 vs. 0.201), and clearer ecological gradients across UNESCO Biosphere Reserve zones. This framework eliminates subjective bias while maintaining regional specificity, establishing a transferable foundation for evidence-based conservation planning. By demonstrating substantial improvements over conventional parameterization, the study highlights the inadequacy of transferred parameters and provides an objective standard for advancing InVEST applications worldwide. Full article
Show Figures

Figure 1

22 pages, 2510 KB  
Article
Bioavailable Forms of Heavy Metals and Se in Soil in the Vicinity of the Pechenganikel Smelting Plant and the Relationship with Mineral Composition and Antioxidant Status of Biocrusts
by Nadezhda Golubkina, Sergey Sheshnitsan, Andrew Koshevarov, Uliana Plotnikova, Evgeniya Sosna, Vladimir Lapchenko, Marina Antoshkina, Olga Khlebosolova, Natalia Polikarpova, Daniele Todisco and Gianluca Caruso
Standards 2025, 5(4), 28; https://doi.org/10.3390/standards5040028 (registering DOI) - 14 Oct 2025
Abstract
The evaluation of bioavailable forms of heavy metals in zones of anthropogenic pollution is the basis of ecological risk assessment. The characterization of the consequences of the operation of the Pechenganikel smelting plant was carried out using AAS and two methods of soil [...] Read more.
The evaluation of bioavailable forms of heavy metals in zones of anthropogenic pollution is the basis of ecological risk assessment. The characterization of the consequences of the operation of the Pechenganikel smelting plant was carried out using AAS and two methods of soil bioavailable forms of heavy metal extraction (3% nitric acid and ammonium acetate buffer with pH 4.8) along three directions from the plant, corresponding to the wind prevalence. Buffer extraction provided more significant correlations between Ni, Co, Cu, Pb, and Zn, compared to nitric acid application, indicating a negative correlation between soil Cu, Co, and the distance from the plant, while no significant correlations were recorded for nitric acid extracts. A higher significant correlation number arose between soil elements in buffer extracts along the N-E direction than the S-W one. In the former direction, the number of the mentioned correlations decreased according to the following sequence: Zn (6) > Cu (5) > Se and Co (4) > Ni and Fe (3); in nitric acid extract, only significant correlations of Cu, Zn, and Se with Co and Ni were recorded. Biocrust formation was revealed only along the N-E direction, characterized by unexpected high Se concentrations and intensive correlation between Zn and all the elements extracted by the buffer. Biocrust accumulated high levels of all the elements tested and showed antioxidant activity and polyphenol content significantly correlated with soil organic matter. The biocrust mineral content demonstrated a complex relationship with soil Fe, Cu (buffer extract), and Se, as well as Co and Zn (nitric acid extract). Application of linear mixed-effects modelling and transfer factor analysis indicate that biocrusts may serve as effective bioindicators of both absolute metal contamination and its bioavailable fractions. The results indicate the expediency of using both methods of soil extraction for assessing the ecological risk and soil–biocrust relationships. Full article
Show Figures

Figure 1

12 pages, 1205 KB  
Article
Alterations of Bioactive Lipid Profiles in the Retina Following Traumatic Optic Neuropathy in Mice
by Min Young Kim, Nandini Koneru, Gieth Alahdab, Michael Risner, Ahmed S. Ibrahim, Krishna Rao Maddipati and Mohamed Al-Shabrawey
Biomolecules 2025, 15(10), 1450; https://doi.org/10.3390/biom15101450 (registering DOI) - 14 Oct 2025
Abstract
Traumatic optic neuropathy (TON) causes vision loss through compression and contusion, yet there is no consensus on the most effective treatment. Polyunsaturated fatty acid (PUFA)-derived bioactive lipids metabolized by lipoxygenase (LOX), cytochrome P450 (CYP), and cyclooxygenase (COX) enzymes are known mediators of inflammation [...] Read more.
Traumatic optic neuropathy (TON) causes vision loss through compression and contusion, yet there is no consensus on the most effective treatment. Polyunsaturated fatty acid (PUFA)-derived bioactive lipids metabolized by lipoxygenase (LOX), cytochrome P450 (CYP), and cyclooxygenase (COX) enzymes are known mediators of inflammation and neurodegeneration. However, their role in TON-related retinal pathology remains unclear. Controlled orbital impact (COI) was used to induce unilateral TON in mice with controlled velocity (2–3 m/s), with the fellow eye serving as an internal control. Retina tissues were collected three days post-injury and analyzed by LC/MS to quantify bioactive lipid metabolites from ω−6 and ω−3 PUFAs. Statistical analysis was performed using paired, nonparametric Wilcoxon signed-rank tests with Benjamini–Hochberg false discovery rate (FDR) correction. Results showed that among 38 reliably detected metabolites, no individual lipid showed a statistically significant difference between TON and control eyes after FDR correction (q < 0.05). However, both individual and pathway-level analysis revealed consistent trends toward increased expression of LOX- and CYP-derived metabolites across FDA PUFA substrates, including arachidonic acid (AA), linoleic acid (LA), and docosahexaenoic acid (DHA). These findings support further investigation into lipid-mediated inflammation in TON and its potential as a therapeutic target, particularly through expanding both the sample size and the post-TON time periods. Full article
Show Figures

Figure 1

19 pages, 1396 KB  
Article
Sparse Keyword Data Analysis Using Bayesian Pattern Mining
by Sunghae Jun
Computers 2025, 14(10), 436; https://doi.org/10.3390/computers14100436 (registering DOI) - 14 Oct 2025
Abstract
Keyword data analysis aims to extract and interpret meaningful relationships from large collections of text documents. A major challenge in this process arises from the extreme sparsity of document–keyword matrices, where the majority of elements are zeros due to zero inflation. To address [...] Read more.
Keyword data analysis aims to extract and interpret meaningful relationships from large collections of text documents. A major challenge in this process arises from the extreme sparsity of document–keyword matrices, where the majority of elements are zeros due to zero inflation. To address this issue, this study proposes a probabilistic framework called Bayesian Pattern Mining (BPM), which integrates Bayesian inference into association rule mining (ARM). The proposed method estimates both the expected values and credible intervals of interestingness measures such as confidence and lift, providing a probabilistic evaluation of keyword associations. Experiments conducted on 9436 quantum computing patent documents, from which 175 representative keywords were extracted, demonstrate that BPM yields more stable and interpretable associations than conventional ARM. By incorporating credible intervals, BPM reduces the risk of biased decisions under sparsity and enhances the reliability of keyword-based technology analysis, offering a rigorous approach for knowledge discovery in zero-inflated text data. Full article
Show Figures

Figure 1

18 pages, 1141 KB  
Article
Influence of Herbal Additives on the Physicochemical, Microbiological, Polyphenolic, and Sensory Profile of Green Tea-Based Kombucha
by Magdalena Gantner, Anna Piotrowska, Eliza Kostyra, Ewelina Hallmann, Alicja Ponder, Barbara Sionek and Katarzyna Neffe-Skocińska
Foods 2025, 14(20), 3497; https://doi.org/10.3390/foods14203497 (registering DOI) - 14 Oct 2025
Abstract
Kombucha is a functional beverage with growing popularity due to its health-promoting properties. This study aimed to evaluate the impact of herbal infusions on the quality of green tea-based kombucha. Four variants were prepared: a control (K1) and three experimental samples combining 70% [...] Read more.
Kombucha is a functional beverage with growing popularity due to its health-promoting properties. This study aimed to evaluate the impact of herbal infusions on the quality of green tea-based kombucha. Four variants were prepared: a control (K1) and three experimental samples combining 70% green tea with 30% (v/v) Mentha spicata (K2), Hibiscus sabdariffa (K3), or Clitoria ternatea (K4). Fermentation lasted four days at 24 ± 1 °C. Physicochemical parameters, polyphenol profile (HPLC), microbiological safety, and sensory quality were assessed using QDA and electronic tongue analysis. K3 showed the highest polyphenol content (291 mg/L), especially catechins. K4 achieved the highest overall sensory quality due to its fruity aroma, balanced sweet-sour taste, and favorable microbiological profile. K2 had the lowest caffeine content (114 mg/L) and a distinct minty flavor. All samples were microbiologically safe. Herbal additives influenced fermentative microbiota: K3 had fewer acetic acid bacteria, while K4 had the highest lactic acid bacteria count. Electronic tongue analysis confirmed sensory panel results and revealed distinct taste profiles among the variants. Herbal infusions significantly enhance the nutritional and sensory properties of kombucha. Their use offers a promising strategy for developing functional beverages with tailored characteristics. Full article
Show Figures

Figure 1

19 pages, 1919 KB  
Review
Essential Concepts in Artificial Intelligence: A Guide for Pediatric Providers
by Laura Elena Mendoza Bolivar and Michael Satzer
Children 2025, 12(10), 1386; https://doi.org/10.3390/children12101386 (registering DOI) - 14 Oct 2025
Abstract
Artificial intelligence (AI) has exploded in public awareness over recent years and is already beginning to reshape the health care sector. Yet, even as AI becomes more prevalent, it remains a mystery to many providers who lack hands-on exposure during their training or [...] Read more.
Artificial intelligence (AI) has exploded in public awareness over recent years and is already beginning to reshape the health care sector. Yet, even as AI becomes more prevalent, it remains a mystery to many providers who lack hands-on exposure during their training or on the job. Intended for medical professionals, this article defines essential concepts in AI interspersed with illustrations of how such concepts may be applied within cardiology and radiology—fields that have garnered the most approved medical AI applications to date. No experience in the field of AI is requisite before reading. To assist providers encountering novel machine learning tools, we also present an AI model checklist to empower critical assessment. We finally discuss hurdles in the path of developing pediatric AI tools—including challenges distinct from the adult setting—and discuss potential solutions, including various methods of multisite collaboration. This article aims to increase the engagement of health care professionals who may encounter AI models in practice or who seek to become involved in AI development themselves. We encourage the reader the freedom to either peruse this article in its entirety or to reference specific concepts individually. Terminology central to machine learning is emphasized in bold. Full article
(This article belongs to the Section Pediatric Cardiology)
Show Figures

Figure 1

14 pages, 2033 KB  
Article
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
by Jorge Feijoo, Rocío Maceiras, Victor Alfonsín, Nevin Aly and Alejandro de la Fuente
Hydrogen 2025, 6(4), 88; https://doi.org/10.3390/hydrogen6040088 (registering DOI) - 14 Oct 2025
Abstract
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However, its practical application requires achieving a high degree of purity throughout the production process. In this study, the influence of the type of catalytic support on [...] Read more.
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However, its practical application requires achieving a high degree of purity throughout the production process. In this study, the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated, with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide, alumina. Alumina and dolomite were coated with Ni at different loadings, while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 °C, with continuous monitoring of H2, CO2, CO, and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%), mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast, alumina and dolomite achieved H2 purities of around 70%, which increased with Ni loading. The improvement was particularly significant in dolomite, owing to its higher porosity and the recarbonation processes of CaO, enabling H2 purities of up to 90%. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

15 pages, 507 KB  
Article
Agronomic and Utilization Potential of Three Elephant Grass Cultivars for Energy, Forage, and Soil Improvement in Vietnam
by Lovisa Panduleni Johannes, Tran Thi Ngoc Minh, Nguyen Van Son, Do Thanh Tung, Tran Duc Viet and Tran Dang Xuan
Crops 2025, 5(5), 70; https://doi.org/10.3390/crops5050070 (registering DOI) - 14 Oct 2025
Abstract
Elephant grass (Pennisetum purpureum Schumach, EG) is a promising biomass energy crop due to its high productivity and adaptability to harsh environments. In the transition to renewable energy, varietal evaluation is essential to identify cultivars that maximize biomass and energy yield. This [...] Read more.
Elephant grass (Pennisetum purpureum Schumach, EG) is a promising biomass energy crop due to its high productivity and adaptability to harsh environments. In the transition to renewable energy, varietal evaluation is essential to identify cultivars that maximize biomass and energy yield. This study assessed three varieties (VS-19, VA-06, and VDP as control) across three harvest cycles (new planting, first regrowth, and second regrowth) between 2022 and 2024 at the Cotton and Agricultural Development Research Institute, Ninh Thuan Province, Vietnam. The site was characterized by mean temperatures of 25–36 °C, relative humidity of 65–82%, and average precipitation of 75.7 mm per month. Agronomic traits, energy potential (heating oil equivalent per hectare, HOE/ha), forage quality, and soil amendment value of the EG were examined to address the research question whether EG can be integrated into a three-cycle utilization model (energy, forage, soil amendment) to support a circular bioeconomy in Vietnam. All cultivars showed good growth, strong drought tolerance, and resistance to pests and diseases. VS-19 showed superior tillering, strong lodging resistance, and the highest biomass yield (63.8 t/ha) with an energy output of 32,636 HOE/ha, while VA-06 (56.1 t/ha; 28,699 HOE/ha) and VDP (54.7 t/ha; 27,952 HOE/ha) produced slightly lower but comparable outputs. Forage evaluation indicated moderate nutritional quality, while residues from the third cycle showed favorable carbon and nutrients content, making EG suitable as a soil amendment. EG thus demonstrates high biomass and energy yields, forage potential, and soil improvement capacity, reinforcing its role in integrated bioenergy and agricultural systems. Full article
Show Figures

Figure 1

24 pages, 3003 KB  
Article
Mud Spurt Distance and Filter Cake Hydraulic Conductivity of Slurry Shield
by Xinsheng Yin, Yanhua Zhu, Gang Wei, Yunliang Cui and Zhi Ding
Buildings 2025, 15(20), 3699; https://doi.org/10.3390/buildings15203699 (registering DOI) - 14 Oct 2025
Abstract
Maintaining stable tunnel face pressure in slurry shield tunneling is critically dependent on the formation of a low-permeability filter cake. However, the knowledge of the filter cake and mud spurt is not specifically understood. Using a modified fluid loss test, this study investigates [...] Read more.
Maintaining stable tunnel face pressure in slurry shield tunneling is critically dependent on the formation of a low-permeability filter cake. However, the knowledge of the filter cake and mud spurt is not specifically understood. Using a modified fluid loss test, this study investigates the formation and hydraulic properties of filter cakes from various slurry mixtures under different pressures. The key findings reveal that CMC-Na (sodium carboxymethyl cellulose) serves as the most effective additive for enhancing slurry performance. A comprehensive database of constitutive model parameters for 15 slurry compositions was established, enabling precise prediction of the filter cake’s hydraulic conductivity and void ratio under any pressure. Analysis of the cyclic formation process revealed that the dynamic filter cake averages two-thirds of the maximum thickness, offering a key parameter for stability control. Furthermore, a practical mud spurt model was proposed that predicts slurry penetration by avoiding the need for site-specific empirical constants or complex column tests, relying instead on standard geotechnical and slurry parameters. The results provide practical criteria for filter cake formation and directly applicable models to optimize slurry design, thereby enhancing the control and safety of shield tunneling. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 3437 KB  
Article
Integrating Process Mining and Machine Learning for Surgical Workflow Optimization: A Real-World Analysis Using the MOVER EHR Dataset
by Ufuk Celik, Adem Korkmaz and Ivaylo Stoyanov
Appl. Sci. 2025, 15(20), 11014; https://doi.org/10.3390/app152011014 (registering DOI) - 14 Oct 2025
Abstract
The digitization of healthcare has enabled the application of advanced analytics, such as process mining and machine learning, to electronic health records (EHRs). This study aims to identify workflow inefficiencies, temporal bottlenecks, and risk factors for delayed recovery in surgical pathways using the [...] Read more.
The digitization of healthcare has enabled the application of advanced analytics, such as process mining and machine learning, to electronic health records (EHRs). This study aims to identify workflow inefficiencies, temporal bottlenecks, and risk factors for delayed recovery in surgical pathways using the open-access MOVER dataset. A multi-stage framework was implemented, including heuristic control-flow discovery, Petri net-based conformance checking, temporal performance analysis, unsupervised clustering, and Random Forest-based classification. All analyses were simulated on pre-discharge (“preliminary”) patient records to enhance real-time applicability. Control-flow models revealed deviations from expected pathways and issues with data quality. Conformance checking yielded perfect fitness (1.0) and moderate precision (0.46), indicating that the model generalizes despite clinical variability. Stratified performance analysis exposed duration differences across ASA scores and age groups. Clustering revealed latent patient subgroups with distinct perioperative timelines. The predictive model achieved 90.33% accuracy, though recall for delayed recovery cases was limited (24.23%), reflecting class imbalance challenges. Key features included procedural delays, ICU status, and ASA classification. This study highlights the translational potential of integrating process mining and predictive modeling to optimize perioperative workflows, stratify recovery risk, and plan resources. Full article
(This article belongs to the Special Issue Machine Learning for Healthcare Analytics)
Show Figures

Figure 1

18 pages, 3161 KB  
Article
A Semi-Automatic Tool for the Standardized Analysis of Fluorescent Intensity Changes in Polarized Cells
by Fruzsina Fazekas, Tibor Zelles and Eszter Berekméri
Int. J. Mol. Sci. 2025, 26(20), 9987; https://doi.org/10.3390/ijms26209987 (registering DOI) - 14 Oct 2025
Abstract
Imaging of intracellular messengers, like calcium, is one of the most reliable methods to follow real-time changes in several aspects of cellular activity, like receptor activation. However, the analysis could be influenced and biased by several factors like the location, shape, and size [...] Read more.
Imaging of intracellular messengers, like calcium, is one of the most reliable methods to follow real-time changes in several aspects of cellular activity, like receptor activation. However, the analysis could be influenced and biased by several factors like the location, shape, and size of the regions of interest (ROIs) and by the detection and correction of the movement of the preparation. Programs which are provided by the manufacturers are expensive and cannot be shared by collaborators. Many self-made programs have been implemented lately which have in-built cell recognizer ROI identification functions. These programs focus on the soma of the cells and neglect the processes, because in full tissue preparation finding cells is still challenging. Subcellular imaging experiments are still rare. To the best of our knowledge there is no program which can automatically define ROIs for subcellular imaging experiments even in single indicated cells with complex morphology. We developed and validated a program to address this gap using simple and understandable mathematical methods for ROI determination and simple statistics for movement correction. Validation experiments were conducted on cochlear Deiters’ cells. Deiters’ cells have processed morphology which connects two fluid compartments in the cochlea. Because of the function and the fine morphology of the cell, it could be interesting to examine the subcellular Ca2+ handling mechanisms of it. Test impulses were activated by ATP. With some limitations the program successfully fulfilled its purpose. As a free, easily understandable, and open-source program, we hope it will help to analyze and plan subcellular experiments. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

23 pages, 4308 KB  
Article
Oligosaccharyltransferase Is Involved in Targeting to ER-Associated Degradation
by Marina Shenkman, Navit Ogen-Shtern, Chaitanya Patel, Haddas Saad, Bella Groisman, Metsada Pasmanik-Chor, Sonya M. Schermann, Roman Körner and Gerardo Z. Lederkremer
Cells 2025, 14(20), 1593; https://doi.org/10.3390/cells14201593 (registering DOI) - 14 Oct 2025
Abstract
Most membrane and secretory proteins undergo N-glycosylation, catalyzed by oligosaccharyltransferase (OST), a membrane-bound complex in the endoplasmic reticulum (ER). Proteins failing quality control are degraded via ER-associated degradation (ERAD), involving retrotranslocation to cytosolic proteasomes, or relegated to ER subdomains and eliminated via ER-phagy. [...] Read more.
Most membrane and secretory proteins undergo N-glycosylation, catalyzed by oligosaccharyltransferase (OST), a membrane-bound complex in the endoplasmic reticulum (ER). Proteins failing quality control are degraded via ER-associated degradation (ERAD), involving retrotranslocation to cytosolic proteasomes, or relegated to ER subdomains and eliminated via ER-phagy. Using stable isotope labeling by amino acids in cell culture (SILAC) proteomics, we identified OST subunits as differential key interactors with a misfolded ER protein bait upon proteasomal inhibition, suggesting unexpected involvement in ERAD. Previous reports implied additional roles for OST subunits beyond N-glycosylation, such as quality control by ribophorin I. We tested OST engagement in glycoprotein and non-glycosylated protein ERAD; overexpression or partial knockdown of OST subunits interfered with ERAD in conditions that did not affect glycosylation. We studied the effects on model misfolded type I and II membrane-bound proteins, BACE476 and asialoglycoprotein receptor H2a, respectively, and on a soluble luminal misfolded glycoprotein, α1-antitrypsin NHK variant. OST subunits appear to participate in late ERAD stages, interacting with the E3 ligase HRD1 and facilitating retrotranslocation. Molecular dynamics simulations suggest membrane thinning by OST transmembrane domains, possibly assisting retrotranslocation via membrane distortion. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

26 pages, 6270 KB  
Article
Autonomous Navigation Approach for Complex Scenarios Based on Layered Terrain Analysis and Nonlinear Model
by Wenhe Chen, Leer Hua, Shuonan Shen, Yue Wang, Qi Pu and Xundiao Ma
Information 2025, 16(10), 896; https://doi.org/10.3390/info16100896 (registering DOI) - 14 Oct 2025
Abstract
In complex scenarios, such as industrial parks and underground parking lots, efficient and safe autonomous navigation is essential for driverless operation and automatic parking. However, conventional modular navigation methods, especially the A* algorithm, suffer from excessive node traversal and short paths that bring [...] Read more.
In complex scenarios, such as industrial parks and underground parking lots, efficient and safe autonomous navigation is essential for driverless operation and automatic parking. However, conventional modular navigation methods, especially the A* algorithm, suffer from excessive node traversal and short paths that bring vehicles dangerously close to obstacles. To address these issues, we propose an autonomous navigation approach based on a layered terrain cost map and a nonlinear predictive control model, which ensures real-time performance, safety, and reduced computational cost. The global planner applies a two-stage A* strategy guided by the hierarchical terrain cost map, improving efficiency and obstacle avoidance, while the local planner combines linear interpolation with nonlinear model predictive control to adaptively adjust the vehicle speed under varying terrain conditions. Experiments conducted in simulated and real underground parking scenarios demonstrate that the proposed method significantly improves the computational efficiency and navigation safety, outperforming the traditional A* algorithm and other baseline approaches in overall performance. Full article
Show Figures

Figure 1

29 pages, 2239 KB  
Review
From Ototoxicity to Otoprotection: Mechanism and Protective Strategies in Cisplatin Therapy
by Andreea Iațentiuc, Sebastian Romică Cozma, Otilia Elena Frăsinariu, Ingrith Crenguța Miron, Iustin Mihai Iațentiuc, Lucia Corina Dima-Cozma, Raluca Olariu, Anca Postolache, Ana-Maria Laura Buga, Alexandru Stingheriu, Edilene Boéchat and Oana Roxana Bitere-Popa
Pharmaceuticals 2025, 18(10), 1543; https://doi.org/10.3390/ph18101543 (registering DOI) - 14 Oct 2025
Abstract
Although cisplatin plays a vital role in chemotherapy protocols, its impact on hearing should not be overlooked. The ototoxic effects of cisplatin can lead to hearing loss. Childhood hearing loss can significantly impact various aspects of development. Understanding the mechanism of cisplatin-induced ototoxicity [...] Read more.
Although cisplatin plays a vital role in chemotherapy protocols, its impact on hearing should not be overlooked. The ototoxic effects of cisplatin can lead to hearing loss. Childhood hearing loss can significantly impact various aspects of development. Understanding the mechanism of cisplatin-induced ototoxicity is crucial due to its high level of complexity. The process involves multiple interconnected steps, ranging from cisplatin absorption to its interaction with the cellular antioxidant defense system, nuclear DNA, mitochondria, and the cytokine cascade. Each of these interactions contributes to the overall pathophysiology of ototoxicity and is closely interrelated. Based on these, various hypotheses and conclusions were outlined, and we tried to analyze them as broadly as possible. Knowledge of these mechanisms has given rise to promising avenues and otoprotection strategies to combat ototoxicity. Although there is only one drug approved by the FDA (Food and Drug Administration), there are numerous drugs that target the mechanisms presented, but that need more evidence to be able to be used safely. In addition to these, the role of the multidisciplinary team should not be neglected and protocols should be established for periodic follow-up of patients treated with cisplatin to prevent hearing loss. This narrative review aims to point out all the aspects presented, based on the analysis of the literature and the conclusions drawn over time. We have selected the articles of interest and analyzed the studies that have obtained promising results to bring an overview of how cisplatin acts at the cochlear level, what can be done to combat these mechanisms, what solutions exist now and how we can prevent hearing loss. Full article
(This article belongs to the Special Issue Therapeutic Drug Monitoring and Adverse Drug Reactions: 2nd Edition)
Show Figures

Figure 1

18 pages, 5648 KB  
Article
Acoustic Estimation of Blue Mackerel (Scomber australasicus) Spawning Biomass in Yilan Bay, Taiwan: Integrating Depth Compensation and Fishery Data (2021–2024)
by Ting-Chieh Huang, Kuo-Wei Yen, Ruei-Gu Chen, Chia-Hsu Chih and Hsueh-Jung Lu
Fishes 2025, 10(10), 522; https://doi.org/10.3390/fishes10100522 (registering DOI) - 14 Oct 2025
Abstract
The mackerel fishery is Taiwan’s most productive coastal fishery sector, with the blue mackerel (Scomber australasicus) being its primary target species. Given the economic and ecological significance of this fishery, considerable attention has been devoted to assessing stock status and promoting [...] Read more.
The mackerel fishery is Taiwan’s most productive coastal fishery sector, with the blue mackerel (Scomber australasicus) being its primary target species. Given the economic and ecological significance of this fishery, considerable attention has been devoted to assessing stock status and promoting sustainable use. Between 2021 and 2024, acoustic transect surveys were conducted in Yilan Bay during the blue mackerel spawning season, supplemented by hook-and-line sampling to confirm the identity of single-target acoustic signals. Acoustic detections within ±10 m of capture depth and ±10 min of capture time were used to establish a depth-compensated regression model linking target strength (TS) to fork length (FL). Validation revealed that over 80% of the hook-and-line samples were blue mackerel. After careful noise filtering, a depth-compensated regression model was established to relate TS to FL and sampling depth. The model incorporated both logarithmic body length and depth terms, effectively accounting for vertical variations in TS. The model improved alignment with biological sampling data by effectively accounting for depth-related variations in TS, thereby enhancing biomass estimation accuracy. Cross-validation with auction records from Nan-Fang-Ao Fishing Harbor confirmed that the acoustic biomass estimates closely mirrored commercial catch trends. These findings highlight the effectiveness of depth-compensated acoustic methodologies for obtaining reliable, fishery-independent spawning biomass estimates, supporting their continued application in long-term monitoring and spatial resource management. Full article
Show Figures

Figure 1

27 pages, 7480 KB  
Article
Short Inverted Repeats as Mutational Hotspots and Putative Drivers of Genome Instability in Osteosarcoma
by Minghua Li and Chun Liang
Genes 2025, 16(10), 1202; https://doi.org/10.3390/genes16101202 (registering DOI) - 14 Oct 2025
Abstract
Background/Objectives: Short inverted repeats (SIRs) are abundant DNA motifs capable of forming secondary structures, such as hairpins and cruciforms, that can induce genome instability. However, their mutational consequences in cancer, particularly in osteosarcoma (OS), remain largely unexplored. Methods: In this study, [...] Read more.
Background/Objectives: Short inverted repeats (SIRs) are abundant DNA motifs capable of forming secondary structures, such as hairpins and cruciforms, that can induce genome instability. However, their mutational consequences in cancer, particularly in osteosarcoma (OS), remain largely unexplored. Methods: In this study, we systematically identified over 5.2 million SIRs in the human genome and analyzed their mutational patterns across six common cancer types. Results: We found that increased small insertion and deletion (INDEL) density within SIR spacer regions represents a consistent feature across cancers, whereas elevated single nucleotide variant (SNV) and structural breakpoint density is cancer-type specific. Integrating whole-genome sequencing data from 13 OS patients, we found that both SNVs and INDELs are significantly enriched within SIR spacer regions in OS. Notably, genomic regions with higher SIR density tend to accumulate more somatic mutations, suggesting a link between SIR abundance and local genome instability. SIR-associated mutations frequently occur in oncogenes and tumor suppressor genes, including TP53, NFATC2, MECOM, LRP1B, RB1, CNTNAP2, and PTPRD, as well as in long non-coding RNAs. Mutational signature analysis further suggests that defective DNA mismatch repair and homologous recombination may act in concert with SIR-induced DNA structural instability to drive OS development. Conclusions: Our findings highlight SIRs as mutational hotspots and potential drivers of osteosarcoma pathogenesis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop