You are currently viewing a new version of our website. To view the old version click .

Advancing Open Science

The world's leading open access publisher. Supporting research communities and accelerating scientific discovery since 1996.

  • 6.4 billionArticle Views
  • 4.4 millionTotal Authors
  • 97%Web of Science Coverage

News & Announcements

Journals

  • This study proposes a robust control strategy to improve the stability and reliability of grid-following inverters with LCL filters, particularly under varying disturbances and instability conditions. A detailed survey of existing control strategies is presented to identify their limitations and highlight the advantages of Internal Model-Based Control (IMC). The analytical representation of IMC has been examined by demonstrating its inherent robustness against system uncertainties and external disturbances. The research focuses on a control method for grid-following inverters operating under challenging conditions such as grid disturbances, nonlinearities, and parameter variations. The effect of these factors on inverter performance is analyzed, and corresponding mitigation strategies such as advanced filtering and adaptive control mechanisms are discussed. A simulation framework is developed to assess the effectiveness of the proposed IMC-based control approach under various grid conditions. The results confirm that IMC enhances system stability, reduces harmonic distortion, and improves dynamic response. Moreover, the outcomes highlight the potential of IMC as a robust and adaptive control solution by providing valuable evaluations for advancing inverter technologies in weak grid environments and optimizing filter designs to achieve improved power quality.

    Electronics,

    30 December 2025

  • Solid rocket motors (SRMs) play a pivotal role in space exploration owing to their reliability and high thrust-to-weight ratios. SRM propellant health monitoring is in critical demand owing to the complex operational scenarios throughout the entire life cycle of SRMs. To achieve in situ detection of three-dimensional stress, this study introduces a novel flexible three-dimensional stress sensor (FSS). First, a liquid metal pressure-sensing element with a variable cross-section was designed and numerically modeled. The performance of the FSS under different loading conditions was analyzed using finite element modeling. The sensing element prototype was fabricated using mold casting and liquid metal injection methods. The fabricated sensing-element prototype with an area ratio of 1:5 exhibited a sensitivity coefficient of 1.5%/kPa at a pressure of 300 kPa, a maximum hysteresis error of 3.98%, and a stability error of 0.17%. Finally, the FSS was developed by integrating multiple pressure-sensing elements and encapsulating the force-concentrating layers. The fabricated FSS prototype was characterized using simulated propellant experiments. Via comparison with the simulation results, the FSS was found to detect multiaxial stress differences when embedded within a propellant.

    Micromachines,

    30 December 2025

  • Hose-drawn traveler (HDT) is a significant type of sprinkler irrigation equipment in China. In arid and remote areas, where grid power is unreliable or unavailable, the water pumping system of the HDT typically depends on a complementary power supply (CPS) system integrating batteries, photovoltaic (PV) panels, and gasoline generators. However, the configuration of the CPS system is often determined empirically, which can lead to increased costs and compromised operational reliability. This paper aims to optimize the configuration of the CPS system based on the power demand of the water pumping system in HDT. We propose an optimization model for component sizing that considers both the annual costs and reliability of the power supply system. An improved particle swarm optimization (PSO) algorithm, incorporating a penalty function, is employed to determine the optimal configuration of the CPS system. The proposed optimization approach is then applied to an HDT operating in three typical regions in China: Golmud, Beijing, and Harbin. Finally, a comparative analysis of the configurations and annual cost of two CPS systems, PV-battery (PVB) and PV-battery-gasoline (PVBG), is conducted. Results show that for a given region, season, and power of water pump, the PVBG system needs a smaller PV panel area and lower battery capacity than the PVB system. For a fixed region and season, increasing power of water pump leads to a more significant rise in the annual cost of the PVB system than in that of the PVBG system. At high pump power levels, the PVBG system is more cost-effective, resulting in a lower annual cost than the PVB system. In Golmud, under identical seasonal and pump power conditions, both systems have lower annual cost than in Beijing and Harbin, suggesting that Golmud is a more suitable region for deploying CPS systems. The proposed method provides a reference for designing power supply systems of HDT irrigation.

    Agriculture,

    30 December 2025

  • The large-scale integration of distributed photovoltaics (DPV) and their inherent uncertainties have significantly increased the operational risks of distribution networks. Moreover, frequent outages caused by extreme events further impose substantial losses on these networks, highlighting the urgent need to enhance their disaster resilience and load-supply capabilities. To address these challenges, this paper proposes an energy storage allocation method that simultaneously considers economic performance and comprehensive vulnerability. First, a vulnerability assessment framework for distribution networks is established from both pre-disaster and post-disaster perspectives. In the pre-disaster stage, an improved electrical betweenness index, voltage deviation index, and network-balance index are employed to identify weak lines and nodes. In the post-disaster stage, based on the identified weak components, two types of scenarios, namely random line failures and worst-case failures, are constructed to emulate extreme events, and an enhanced network supply efficiency index is developed to quantitatively evaluate the network’s recovery capability. Subsequently, a multi-objective optimal allocation model for energy storage is formulated with economic cost and comprehensive vulnerability as objective functions, and an Enhanced Beluga Whale Optimization algorithm is adopted to obtain the optimal siting and sizing of energy storage systems. Case studies on an improved IEEE 33-bus distribution system show that, compared with the no-ESS scheme, the proposed plan yields about a 66.4% reduction in network loss cost, around 22% improvement in average voltage deviation, and a roughly 10% reduction in the comprehensive vulnerability index under normal operation. Under random and targeted line outage scenarios, the proposed scheme also achieves the highest area under curve and average network effectiveness indices and the lowest performance volatility among the benchmark strategies. These results demonstrate that, for the tested IEEE 33-bus system, the vulnerability-driven ESS planning framework can markedly enhance both economic efficiency and resilience to extreme events.

    Energies,

    30 December 2025

  • R-limonene has been integrated into various pest control practices as a repellent or an insecticide. However, how limonene induces aversion or mortality remains largely unknown. To elucidate the underlying mechanisms, we conducted behavioral, toxicological, and electrophysiological assays in Aedes aegypti, a primary vector of human diseases. To investigate whether limonene acts on voltage-gated sodium channels and/or the Rdl (Resistance to dieldrin) receptor, two major targets of neuroactive insecticides, we characterized the effect of limonene on Ae. aegypti sodium and Rdl channels expressed in Xenopus oocytes. Limonene significantly potentiated GABA-induced chloride currents through Rdl in a concentration-dependent manner but had no effect on sodium channels. For repellency, limonene evoked spatial repellency in wild-type mosquitoes; however, the spatial repellency by limonene was significantly reduced in knockout mutants of Orco−/− (odorant receptor co-receptor) and TRPA1−/− (Transient Receptor Protein, subfamily A and member 1). These results indicate that limonene likely targets the Rdl receptor for insecticidal activity and limonene spatial repellency requires both Orco and TRPA1 channels. Our results reveal the involvement of multiple ion channels and receptors in the mosquito nervous system for limonene’s insecticidal and/or spatial repellency actions, highlighting limonene’s potential as a multi-target neuroactive agent for pest control.

    Int. J. Mol. Sci.,

    30 December 2025

  • Energy efficiency in hospitals—where continuous operation with high internal gains and strict comfort needs—demands facade strategies tailored to climate. This study quantifies how the window-to-wall ratio (WWR) distribution and city-specific envelope properties affect the annual heating and cooling loads of a four-story, 3000 m2 hospital in Turkey. Energy simulations were conducted using DesignBuilder (2021) with EnergyPlus under a controlled modeling framework, following ASHRAE healthcare guidelines for internal loads and TS 825:2024 for envelope compliance. Three locations were selected to span national variability: Bursa (Marmara—temperate/transition), Mersin (Mediterranean—hot–humid), and Kars (humid continental—cold). Scenario 1 (S1) assigned a graduated WWR on the south facade by floor—20%, 30%, 40%, and 50% from ground to top—while the north, east, and west facades were held at 20%, 30%, and 20%. Scenario 2 (S2) preserved the same geometry and WWR values but applied the graduated WWR to the north facade instead, keeping the south at 20%, east at 30%, and west at 20%. Within each city, opaque and glazing properties were kept constant across scenarios to isolate WWR–orientation effects. For every city–scenario combination, annual space-heating and space-cooling loads were computed, and window heat gains and losses were analyzed on the facade with variable WWR to support interpretation of performance mechanisms. The results indicate that S2 outperforms S1 in Mersin, S1 outperforms S2 in Kars, and S2 offers a moderate advantage in Bursa.

    Buildings,

    30 December 2025

  • High-resolution snow depth monitoring is a crucial foundation for precise disaster early warning and optimal water resource management. Traditional snow depth estimation methods mainly rely on passive microwave remote sensing data, but due to their low spatial resolution, they have difficulties capturing the subtle changes in snow depth in complex terrain. Existing deep learning methods mostly adopt single-modal or simple band fusion, failing to fully utilize the complementarity among multi-source data and not considering that terrain factors can lead to misjudgment of the true snow signal. Therefore, this paper proposes a dual-branch intermediate fusion network (TACMF-Net) for high-latitude regions in Asia. By introducing terrain factors (DEM, slope, aspect) and conducting cross-modal feature interaction, it achieves efficient collaboration of multi-source remote sensing data. Research shows that our method has extremely high accuracy and robustness on the self-made multi-source snow depth terrain dataset.

    Appl. Sci.,

    30 December 2025

  • This study comprehensively analyzes the free vibration and transient response for a sandwich piezoelectric laminated beam with elastic boundaries in a thermal environment. Quasi-3D shear deformation beam theory (Q3DBT) and Hamilton’s principle are used to obtain the thermo-electro-mechanical coupling equations, and the method of reverberation-ray matrix (MRRM) is utilized to integrate the phase and scattering relationship of the structure in a unified approach. Specifically, the scattering relationship established by the Mixed Rigid-Rod Model (MRRM) via dual coordinate systems describes the general dynamic model of the beam using generalized displacements and generalized forces at the two endpoints. This analytical solution is compared with the finite element numerical results based on Solid5 and Solid45 elements. The similarity of this approach lies in the fact that solid elements can account for the Poisson effect of thick beams, while the difference is that solid elements have a certain width; here, the error is minimized by adopting a single-element division in the width direction. Comparison of the numerical results under different geometric parameters and boundary conditions with the simulation software proves that MRRM has good accuracy and stability in analyzing the dynamic performance of sandwich piezoelectric laminated beams. On this basis, a spring-supported boundary technology is introduced to expand the flexibility of classical boundary conditions, and a detailed parameterization study is conducted on the material properties of the base layer, including the material parameters, geometric property, and the external temperature. The study in this article provides many new results for sandwich-type piezoelectric laminated structures to help further research.

    Materials,

    30 December 2025

Partnerships