All articles published by MDPI are made immediately available worldwide under an open access license. No special
permission is required to reuse all or part of the article published by MDPI, including figures and tables. For
articles published under an open access Creative Common CC BY license, any part of the article may be reused without
permission provided that the original article is clearly cited. For more information, please refer to
https://www.mdpi.com/openaccess.
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature
Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for
future research directions and describes possible research applications.
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive
positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world.
Editors select a small number of articles recently published in the journal that they believe will be particularly
interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the
most exciting work published in the various research areas of the journal.
Dietary patterns have been identified as one of the most important modifiable risk factors for several non-communicable diseases, inextricably linked to the health span of older people. Poor dietary choices may act as triggers for immune responses such as aggravated inflammatory reactions and
[...] Read more.
Dietary patterns have been identified as one of the most important modifiable risk factors for several non-communicable diseases, inextricably linked to the health span of older people. Poor dietary choices may act as triggers for immune responses such as aggravated inflammatory reactions and oxidative stress contributing to the pathophysiology of several ageing hallmarks. Novel dietary interventions are being explored to restore gut microbiota balance and promote overall health in ageing populations. Probiotics and, most recently, postbiotics, which are products of probiotic fermentation, have been reported to modulate different signalling biomolecules involved in immunity, metabolism, inflammation, and oxidation pathways. This review presents evidence-based literature on the effects of postbiotics in promoting healthy ageing and mitigating various age-related diseases. The development of postbiotic-based therapeutics and diet-based interventions within a personalised microbiota-targeted approach is proposed as a possible direction for improving health in the elderly population. Despite growing evidence, the data regarding their exact mechanistic pathways for antioxidant and immunomodulating activities remain largely unexplored. Expanding our understanding of the mechanistic and chemical determinants of postbiotics could contribute to disease management approaches, as well as the development of and optimisation of biotherapeutics.
Full article
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs
[...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions.
Full article
The optimal design of electromagnetic interference (EMI) filters relies on accurate characterization of noise source impedance. The conventional insertion loss method involves integrating two distinct passive two-port networks between the linear impedance stabilization network (LISN) and the equipment under test (EUT). The utilization
[...] Read more.
The optimal design of electromagnetic interference (EMI) filters relies on accurate characterization of noise source impedance. The conventional insertion loss method involves integrating two distinct passive two-port networks between the linear impedance stabilization network (LISN) and the equipment under test (EUT). The utilization of the insertion loss to formulate a system of binary quadratic equations concerning the real and imaginary components of the impedance of the noise source enables the precise extraction of the magnitude and phase of the noise source impedance in theory. However, inherent inaccuracies in the insertion loss method during extraction can compromise impedance accuracy or even cause extraction failure. This work employs a series inductance method to overcome these limitations. Exact analytical expressions are derived for the magnitude and phase of the noise source impedance. Subsequently, the application scope of the series insertion loss method is analyzed, and the impact of insertion loss measurement error on noise source impedance extraction accuracy is quantified. Requirements for improving extraction accuracy are discussed, and method optimization strategies are proposed. The permissible range of insertion loss error ensuring a solution exists is deduced. Finally, simulation and experimental results validate the proposed approach in a buck converter.
Full article
by
Rayanne A. Nunes, Kelly M. M. Dias, Marcio S. Duarte, Claudson O. Brito, Ricardo V. Nunes, Tiago G. Petrolli, Samuel O. Borges, Larissa P. Castro, Beatriz G. Vale and Arele A. Calderano
This study investigated the effects of dietary capsaicinoid (CAP) supplementation on broiler chickens subjected to an inflammatory challenge induced by lipopolysaccharide (LPS). A total of 144 Cobb500™ male broilers (Rivelli Alimentos SA, Matheus Leme, Brazil), raised from 1 to 21 days, were randomly
[...] Read more.
This study investigated the effects of dietary capsaicinoid (CAP) supplementation on broiler chickens subjected to an inflammatory challenge induced by lipopolysaccharide (LPS). A total of 144 Cobb500™ male broilers (Rivelli Alimentos SA, Matheus Leme, Brazil), raised from 1 to 21 days, were randomly assigned to three treatments, with eight replicates of six birds. Treatments were a control diet (CON), a control diet with LPS administration (CON+LPS), and a control diet supplemented with 1 mg CAP/kg feed and LPS (CAP+LPS). LPS was administered intraperitoneally on days 14, 16, 18, and 20. Performance, intestinal morphometry, serum metabolites, and jejunal gene expression related to oxidative and inflammatory responses were evaluated. Slaughter was at 20 days. Data were subjected to ANOVA and means compared by Tukey’s test at 0.05 significance. CON broilers exhibited the highest feed intake and a better feed conversion ratio (p < 0.05) compared to CON+LPS. CAP+LPS broilers showed higher body weight gain than CON+LPS but lower than CON broilers (p < 0.001). CON+LPS broilers had the highest crypt depth (p = 0.002). Higher mRNA expression of superoxide dismutase and catalase (p > 0.05) was observed in CON broilers. In conclusion, supplementation with a 1 mg CAP/kg diet improves the growth performance and intestinal morphometry of LPS-challenged broiler chickens.
Full article
by
Andrey V. Basko, Konstantin V. Pochivalov, Tatyana N. Lebedeva, Mikhail Y. Yurov, Alexander S. Zabolotnov, Sergey S. Gostev, Alexey A. Yushkin, Alexey V. Volkov and Sergei V. Bronnikov
A recently proposed method called “controlled swelling of monolithic films” was implemented to prepare ultra-high-molecular-weight polyethylene (UHMWPE) ultrafiltration membranes. For the first time, the effect of UHMWPE molecular weight (MW) on the structure and properties of the membranes prepared via this special case
[...] Read more.
A recently proposed method called “controlled swelling of monolithic films” was implemented to prepare ultra-high-molecular-weight polyethylene (UHMWPE) ultrafiltration membranes. For the first time, the effect of UHMWPE molecular weight (MW) on the structure and properties of the membranes prepared via this special case of thermally induced phase separation was studied in detail. The morphology and properties of the membranes were studied using SEM, DSC, liquid–liquid displacement porometry, and standard methods for the evaluation of mechanical properties, permeance, rejection, and abrasion resistance. High-quality membranes with a tensile strength of 5.0–17.8 MPa, a mean pore size of 25–50 nm, permeance of 17–107 L m−2 h−1 bar−1, rejection of model contaminant (blue dextran) of 72–98%, and great abrasion resistance can be prepared only if the MW of the polymer in the initial monolithic film is sufficiently high. The properties of the membranes can effectively be controlled by changing the MW of the polymer and the mass fraction of the latter in the swollen film. Shrinkage is responsible for the variation in the membrane properties. The membranes prepared from a higher-MW polymer are more prone to shrinking after the removal of the solvent. Shrinkage decreases before rising again and minimizes with an increase in the polymer content in the swollen film.
Full article
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in
[...] Read more.
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in the “Chaotic Terrain” region, and the revised seafloor spreading model is constructed in the PVB. Using detailed analysis of the seafloor topography, we identify typical geomorphological features associated with seafloor spreading, such as regularly aligned abyssal hills and OCCs in the PVB. The direction variations of seafloor spreading in the PVB are closely related to mid-ocean ridge rotation and propagation. The formation of OCCs in the “Chaotic Terrain” can be explained by links to the continuous and persistent activity of detachment faults and dynamic adjustments controlled by variations of deep magma supply in the different segments in the PVB. We use 2D discrete Fourier image analysis of the seafloor topography to calculate the aspect ratio (AR) values of abyssal hills in the western part of the PVB. The AR value variations reveal a distinct imbalance in magma supply across various regions during the basin spreading process. Compared to the “Chaotic Terrain” area, the region with abyssal hills indicates a higher magma supply and greater linearity on seafloor topography. AR values fluctuated between 2.1 and 1.7 of abyssal hills in the western segment, while in the “Chaotic Terrain”, they dropped to 1.3 due to the lower magma supply. After the formation of the OCC-1, AR values increased to 1.9 in the eastern segment, and this shows the increase in magma supply. Based on changes in seafloor topography and variations in magma supply across different segments of the PVB, we propose that the seafloor spreading process in the magnetic anomaly linear strip 9-6A of the PVB mainly underwent four formation stages: ridge rotation, rift propagation, magma-poor supply, and the maturation period of OCCs.
Full article
Additive manufacturing (AM) has emerged as a transformative technology in dentistry, enabling the production of patient-specific dental applications with reduced costs and fabrication times. Despite the growth of applications, a consolidated understanding of current 3D printing technologies, materials, and performance in dental settings
[...] Read more.
Additive manufacturing (AM) has emerged as a transformative technology in dentistry, enabling the production of patient-specific dental applications with reduced costs and fabrication times. Despite the growth of applications, a consolidated understanding of current 3D printing technologies, materials, and performance in dental settings remains fragmented. Here, we perform a Systematic Literature Review (SLR) using the PRISMA protocol, retrieving 19 closely related primary studies. The evidence is synthesized across three axes: application domain, AM technology, and critical quality parameters. Dental restorations, prosthetics, crowns, and implants are the most common applications, while fused deposition modeling, stereolithography, digital light processing, selective laser sintering, and laser-directed energy deposition are the most used technologies. AM materials include polymers, metals, and emerging biomaterials. Key quality determinants include dimensional accuracy, wear and corrosion resistance, and photosensitivity. Notably, biocompatibility and cytotoxicity remain underexplored yet critical factors for ensuring long-term clinical safety. The evidence also suggests a lack of in vivo studies, insufficient tribological and microbiological testing, including limited data degradation pathways of AM materials under oral conditions. Understanding that there are disconnects between the realization of the clinical and the economic benefits of 3D printing in dentistry, future research requires standardized testing frameworks and long-term biocompatibility validation.
Full article
Background/Objectives: Irritable bowel syndrome (IBS) is a common disorder of brain–gut interaction characterized by abdominal pain and altered bowel habits. While stress and anxiety are known to exacerbate IBS symptoms, less is understood about how these factors interact on a daily timescale. This
[...] Read more.
Background/Objectives: Irritable bowel syndrome (IBS) is a common disorder of brain–gut interaction characterized by abdominal pain and altered bowel habits. While stress and anxiety are known to exacerbate IBS symptoms, less is understood about how these factors interact on a daily timescale. This study aimed to clarify the relationship between daily stress and abdominal pain in IBS and to examine whether trait anxiety moderates this association. Methods: Forty-nine IBS patients completed daily assessments of stress and abdominal pain over a 14-day period. Participants rated abdominal pain three times daily and reported daily stress levels across seven life domains each evening. Trait anxiety was assessed at baseline using the STAI-T. Results: Hierarchical linear modeling was used to analyze within-person and between-person effects. An increase in between-person stress was associated with increased probability of abdominal pain among individuals with low-to-moderate trait anxiety, while this was not observed in patients with high trait anxiety. Even though within-person (day-to-day) stress variations had an impact on pain probability, the effects of between-person variations were multiple times greater. Conclusions: These findings suggest that the interplay between stress and anxiety in IBS might not be uniform. High trait anxiety may, under certain conditions, attenuate rather than amplify the link between stress and pain, possibly pointing to a more dynamic relationship.
Full article
by
Luciana de Araújo Pimenta, Ellen Emi Kato, Ana Claudia Martins Sobral, Evandro Luiz Duarte, Maria Teresa Moura Lamy, Kerly Fernanda Mesquita Pasqualoto and Sandra Coccuzzo Sampaio
Crotoxin (CTX), the main toxin in Crotalus durissus terrificus venom, is a heterodimeric complex known for its antitumoral, anti-inflammatory, and immunomodulatory properties. In macrophages, CTX stimulates energy metabolism, pro-inflammatory cytokines, superoxide production, and lipoxin A4 secretion while inhibiting macrophage spreading and phagocytosis.
[...] Read more.
Crotoxin (CTX), the main toxin in Crotalus durissus terrificus venom, is a heterodimeric complex known for its antitumoral, anti-inflammatory, and immunomodulatory properties. In macrophages, CTX stimulates energy metabolism, pro-inflammatory cytokines, superoxide production, and lipoxin A4 secretion while inhibiting macrophage spreading and phagocytosis. These effects are completely blocked by Boc-2, a selective formyl peptide receptors (FPRs) antagonist. Despite the correlation between FPRs and CTX-mediated effects, their involvement in mediating CTX entry into macrophages remains unclear. This study aimed to investigate the involvement of FPRs in CTX entry into monocytes and macrophages. For this, THP-1 cells were silenced for FPRs or treated with Boc-2. Results demonstrated that FPR-related signaling pathways, which influence macrophage functions such as ROS release, phagocytosis, and spreading, were reduced in FPR-silenced cells. However, even in the absence of FPRs, CTX was efficiently internalized by macrophages. These findings suggest that FPRs are essential for the immunomodulatory effects of CTX, but are not involved in CTX internalization.
Full article
In shallow groundwater areas, the freeze–thaw process can easily exacerbate soil salinization. The variations and migrations of Na+, K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3− at the depth
[...] Read more.
In shallow groundwater areas, the freeze–thaw process can easily exacerbate soil salinization. The variations and migrations of Na+, K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3− at the depth of 0–100 cm under shallow groundwater depth (2.63–2.87 m) during the freeze–thaw period were analyzed. And a multi-index comprehensive evaluation method based on factor analysis was employed to investigate the soil salinization degree. The results show that K+, Mg2+, and HCO3− exhibited surface enrichment during the freeze–thaw period, while Na+, Cl−, and SO42− accumulated in the frozen layer during the freezing stage. However, there is no surface enrichment of Ca2+. During the freezing stage, Mg2+ and Cl− exhibited the strongest migration capabilities among cations and anions, respectively. During the thawing stage, K+ and HCO3− were the cation and anion with the highest ionic migration capabilities, respectively. Total salinity (TS), Cl−, SO42−, HCO3−, Na+, K+, Mg2+, and residual sodium carbonate (RSC) were identified as the dominant factors influencing the salinization degree during the freeze–thaw period. During the freezing stage, soil salt ions predominantly migrated from the unfrozen to the frozen layer, and the salinization degree in the frozen layer increased with the development of the frozen layer. In the thawing stage, soil salt ions migrated upward from the thawing front, and the salinization degree at the depth of 0–30 cm increased. This study provides insights for the prevention and control of soil salinization in arid regions.
Full article
Rugby Union is a high-impact sport with considerable injury risk, especially in emerging rugby settings where structured physical preparation may be limited. This study aimed to assess the epidemiological profile and injury incidence among Rugby Union players in Brazil, providing insights to inform
[...] Read more.
Rugby Union is a high-impact sport with considerable injury risk, especially in emerging rugby settings where structured physical preparation may be limited. This study aimed to assess the epidemiological profile and injury incidence among Rugby Union players in Brazil, providing insights to inform strength and conditioning strategies. A cross-sectional observational study was conducted between October 2023 and February 2024 using a digital questionnaire that captured demographic data, sports participation history, and detailed information about injuries sustained in 2022 and 2023. A total of 236 players participated (58.9% male; mean age = 29.4 ± 7.5 years), with males averaging 29.6 ± 7.7 years and females 29.1 ± 7.5 years. Overall, 183 injuries were reported. Most injuries occurred during matches (73.3%) and were contact-related (82.1%), with the shoulder/clavicle and knee being the most affected regions. Ligament injuries (27.3%), dislocations (15.3%), and fractures (16.4%) were the most prevalent types. Female players had a distinct injury pattern, with a greater proportion of non-contact mechanisms. Significant associations were found between injury occurrence and sex (p = 0.012), playing modality (p < 0.001), injury type (p = 0.013), and recovery time (p = 0.006). These findings highlight the urgent need for tailored strength and conditioning interventions focused on injury prevention and athletic preparedness. Such programs should address sport-specific demands, promote neuromuscular resilience, and be accessible across competitive levels to improve performance and minimize injury-related setbacks.
Full article
This paper addresses text simplification task for Kazakh, a morphologically rich, low-resource language, by introducing KazSim, an instruction-tuned model built on multilingual large language models (LLMs). First, we develop a heuristic pipeline to identify complex Kazakh sentences, manually validating its performance on 400
[...] Read more.
This paper addresses text simplification task for Kazakh, a morphologically rich, low-resource language, by introducing KazSim, an instruction-tuned model built on multilingual large language models (LLMs). First, we develop a heuristic pipeline to identify complex Kazakh sentences, manually validating its performance on 400 examples and comparing it against a purely LLM-based selection method; we then use this pipeline to assemble a parallel corpus of 8709 complex–simple pairs via LLM augmentation. For the simplification task, we benchmark KazSim against standard Seq2Seq systems, domain-adapted Kazakh LLMs, and zero-shot instruction-following models. On an automatically constructed test set, KazSim (Llama-3.3-70B) achieves BLEU 33.50, SARI 56.38, and F1 87.56 with a length ratio of 0.98, outperforming all baselines. We also explore prompt language (English vs. Kazakh) and conduct human evaluation with three native speakers: KazSim scores 4.08 for fluency, 4.09 for meaning preservation, and 4.42 for simplicity—significantly above GPT-4o-mini. Error analysis shows that remaining failures cluster into tone change, tense change, and semantic drift, reflecting Kazakh’s agglutinative morphology and flexible syntax.
Full article
Bio-basedpolyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of
[...] Read more.
Bio-basedpolyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of ATT on bio-based PUAB were systematically investigated, including cure kinetics, rotational viscosity (RV) evolution, phase-separation microstructures, dynamic mechanical properties, thermal stability, and mechanical performance. Experimental characterization employed Fourier transform infrared spectroscopy, Brookfield viscometry, laser scanning confocal microscopy, dynamic mechanical analysis, thermogravimetry, and tensile testing. ATT incorporation accelerated the polyaddition reaction conversion between isocyanate groups in polyurethane (PU) and hydroxyl groups in ATT. Paradoxically, it reduced RV during curing, prolonging allowable construction time proportionally with clay content. Additionally, ATT’s compatibilizing effect decreased bitumen particle size in PUAB, with scaling proportionally with clay loading. While enhancing thermal stability, ATT lowered the glass transition temperature and damping properties. Crucially, 1 wt% ATT increased tensile strength by 71% and toughness by 62%, while maintaining high elongation at break (>400%). The cost-effectiveness and significant reinforcement capability of ATT make it a promising candidate for producing high-performance bio-based PUAB composites.
Full article
Sub-Saharan Africa is experiencing the highest mortality rates for several cancer types. While cancer research globally has entered the genomic era and advanced the deployment of precision oncology, Africa has largely been excluded and has received few benefits from tumour profiling. Through a
[...] Read more.
Sub-Saharan Africa is experiencing the highest mortality rates for several cancer types. While cancer research globally has entered the genomic era and advanced the deployment of precision oncology, Africa has largely been excluded and has received few benefits from tumour profiling. Through a thorough literature review, we identified only five whole cancer genome databases that include patients from Sub-Saharan Africa, covering four cancer types (breast, esophageal, prostate, and Burkitt lymphoma). Irrespective of cancer type, these studies report higher tumour genome instability, including African-specific cancer drivers and mutational signatures, suggesting unique contributory mechanisms at play. Reviewing bioinformatic tools applied to African databases, we carefully select a workflow suitable for large-scale African resources, which incorporates cohort-level data and a scalable design for time and computational efficiency. Using African genomic data, we demonstrate the scalability achieved by high-level parallelism through physical data or genomic interval chunking strategies. Furthermore, we provide a rationale for improving current workflows for African data, including the adoption of more genomic techniques and the prioritisation of African-derived datasets for diverse applications. Together, these enhancements and genomic scaling strategies serve as practical computational guidance, lowering technical barriers for future large-scale African-inclusive research and ultimately helping to reduce the disparity gap in cancer mortality rates across Sub-Saharan Africa.
Full article
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi
[...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau.
Full article
Directed grey-box fuzzers focus on testing specific target code. They have been utilized in various security applications, such as reproducing known crashes and identifying vulnerabilities resulting from incomplete patches. Distance-guided directed fuzzers calculate the distance to the target node for each node in
[...] Read more.
Directed grey-box fuzzers focus on testing specific target code. They have been utilized in various security applications, such as reproducing known crashes and identifying vulnerabilities resulting from incomplete patches. Distance-guided directed fuzzers calculate the distance to the target node for each node in a CFG or CG, which has always been the mainstream in this field. However, the distance can only reflect the relationship between the current node and the target node, and it does not consider the impact of the reaching sequence before the target node. To mitigate this problem, we analyzed the properties of the instrumented function’s call graph after selective instrumentation, and the complexity of reaching the target function sequence was estimated. Assisted by the sequence complexity, we proposed a two-stage function call sequence-based seed-scheduling strategy. The first stage is to select seeds with a higher probability of generating test cases that reach the target function. The second stage is to select seeds that can generate test cases that meet the conditions for triggering the vulnerability as much as possible. We implemented our approach in SEZZ based on SelectFuzz and compare it with related works. We found that SEZZ outperformed AFLGo, Beacon, WindRanger, and SelectFuzz by achieving an average improvement of 13.7×, 1.50×, 9.78×, and 2.04× faster on vulnerability exposure, respectively. Moreover, SEZZ triggered three more vulnerabilities than the other compared tools.
Full article
Lightweightness and durability are key consumer demands for footwear. To address the issues of deformation and poor durability in foamed sole materials, this study integrates natural fibers into the formulation of foamed rubber. The effects of natural fiber incorporation on density, mechanical properties,
[...] Read more.
Lightweightness and durability are key consumer demands for footwear. To address the issues of deformation and poor durability in foamed sole materials, this study integrates natural fibers into the formulation of foamed rubber. The effects of natural fiber incorporation on density, mechanical properties, creep behavior, anti-slip performance, and aging resistance were comprehensively analyzed. Additionally, the study explored the mechanisms underlying the improved performance of the modified rubber materials. The results revealed that natural fiber integration significantly enhanced the structural stability, strength, and aging resistance of natural rubber (NR). Among the fibers compared, collagen fibers (CF) proved to be the most effective modifier for foamed NR. The density, tensile strength, tear strength, and coefficient of friction of CF-modified foamed NR (CF-NR) were found to be 0.72 g/cm3, 10.1 MPa, 48.0 N/mm, and 1.105, respectively, meeting the standard requirements for sole materials. Furthermore, CF-NR demonstrated a recoverable deformation of 4.58% and a negligible irreversible deformation of 0.10%, indicating a successful balance between comfort and durability. This performance enhancement can be attributed to the supportive role of CF in the pore structure, along with its inherent flexibility and recoverability. This work presents a novel approach for the development of high-quality, lightweight footwear in the sole material industry.
Full article
by
Gilberto Uriel Rosas-Sánchez, León Jesús Germán-Ponciano, Abraham Puga-Olguín, Mario Eduardo Flores Soto, Angélica Yanet Nápoles Medina, José Luis Muñoz-Carillo, Juan Francisco Rodríguez-Landa and César Soria-Fregozo
The gut microbiota and its interaction with the nervous system through the gut–brain axis (MGB) have been the subject of growing interest in biomedical research. It has been proposed that modulation of microbiota using probiotics could offer a promising therapeutic alternative for mood
[...] Read more.
The gut microbiota and its interaction with the nervous system through the gut–brain axis (MGB) have been the subject of growing interest in biomedical research. It has been proposed that modulation of microbiota using probiotics could offer a promising therapeutic alternative for mood regulation and the treatment of anxiety and depression disorders. The findings indicate that several probiotic strains, such as Lactobacillus and Bifidobacterium, have demonstrated anxiolytic and antidepressant effects in pre and clinical studies. These effects seem to be mediated by the regulation of the hypothalamic–pituitary–adrenal axis (HPA), the synthesis of neurotransmitters such as serotonin (5-HT) and Gamma-amino-butyric acid (GABA), as well as the modulation of systemic inflammation. However, the lack of standardization in dosing and strain selection, in addition to the scarcity of large-scale clinical studies, limit the applicability of these findings in clinical therapy. Additional research is required to establish standardized therapeutic protocols and better understand the role of probiotics in mental health. The aim of this narrative review is to discuss the relationship between the gut microbiota and the MGB axis in the context of anxiety and depression disorders, the underlying neurobiological mechanisms, as well as the preclinical evidence for the effect of probiotics in modulating these disorders. In this way, an exhaustive search was carried out in scientific databases including PubMed, ScienceDirect, Scopus, and Web of Science. Preclinical research evaluating the effects of different probiotic strains in animal models during chronic treatment was selected, excluding those studies that did not provide access to the full text.
Full article
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and
[...] Read more.
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and surface-decorated polyvinyl alcohol/citric acid nanofiber mat (PCNM) was employed as a novel immobilization matrix for acetylcholinesterase (AChE). The PCNM, crosslinked at 130 °C for 50 min, exhibited appropriate microstructure and water stability, making it suitable for AChE immobilization. The activation of carboxyl groups by surface decoration resulted in a 2.5-fold increase in enzyme loading capacity. Through parameter optimization, the detection limits for phoxim and methomyl were determined to be 0.007 mg/L and 0.10 mg/L, respectively. The detection card exhibited superior sensitivity and a reduced detection time (11 min) when compared to a commercially available pesticide detection card. Furthermore, the detection results of pesticide residues in fruit and vegetable samples confirmed its feasibility and superiority over commercial alternatives, suggesting its great potential for practical application in the on-site detection of pesticide residues.
Full article
The leaf diseases of Panax notoginseng (Panax notoginseng (Burk) F. H. Chen) are mainly spread by spores. To enable rapid and sensitive detection of spores for early warning of disease spread, we developed a carbon dot-based fluorescent probe encapsulated by MIL-101 using
[...] Read more.
The leaf diseases of Panax notoginseng (Panax notoginseng (Burk) F. H. Chen) are mainly spread by spores. To enable rapid and sensitive detection of spores for early warning of disease spread, we developed a carbon dot-based fluorescent probe encapsulated by MIL-101 using wax apple as a green carbon source (WA-CDs@MIL-101). The WA-CDs@MIL-101 was thoroughly characterized, and the detection conditions were optimized. The interaction mechanism between WA-CDs@MIL-101 and spores was investigated. The fluorescence of WA-CDs@MIL-101 was recovered due to electrostatic adsorption between spores and WA-CDs@MIL-101. Under the optimized detection conditions, the probe exhibited excellent sensing performance, showing a strong linear relationship (R2 = 0.9978) between spore concentration (0.0025–5.0 mg/L) and fluorescence recovery ratio, with a detection limit of 5.15 μg/L. The WA-CDs@MIL-101 was successfully applied to detect spores on Panax notoginseng leaves, achieving satisfactory recoveries (94–102%) with relative standard deviations of 1.3–3.4%. The WA-CDs@MIL-101 shows great promise for detecting spores on Panax notoginseng leaves.
Full article
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to
[...] Read more.
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to weed infestations, particularly before the application of spring herbicide treatments. Field investigations were conducted from 2018 to 2021 across selected maize-growing regions in Hungary. Over the four-year period, a total of 51 weed species were recorded, with Echinochloa crus-galli, Chenopodium album, Portulaca oleracea, and Hibiscus trionum emerging as the most prevalent taxa. Collectively, these four species accounted for more than half (52%) of the total weed cover. Altogether, the 20 most dominant species contributed 95% of the overall weed coverage. The analysis revealed that weed cover, species richness, and weed diversity were significantly affected by soil properties, nutrient levels, geographic location, and tillage systems. The results confirm that the composition of weed species was influenced by several environmental and management-related factors, including soil parameters, geographical location, annual precipitation, tillage method, and fertilizer application. Environmental factors collectively explained a slightly higher proportion of the variance (13.37%) than farming factors (12.66%) at a 90% significance level. Seasonal dynamics and crop rotation history also played a notable role in species distribution. Nutrient inputs, particularly nitrogen, phosphorus, and potassium, influenced both species diversity and floristic composition. Deep tillage practices favored the proliferation of perennial species, whereas shallow cultivation tended to promote annual weeds. Overall, the composition of weed vegetation proved to be a valuable indicator of site-specific soil conditions and agricultural practices. These findings underscore the need to tailor weed management strategies to local environmental and soil contexts for sustainable crop production.
Full article
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power
[...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles).
Full article
Although cranial growth has been extensively explored, forensic and biological anthropology lack a formal incorporation of how cranial growth processes impact the adult phenotype and downstream biological profile estimations. Objectives: This research uses an ontogenetic framework to identify when interlandmark distances (ILDs) stabilize
[...] Read more.
Although cranial growth has been extensively explored, forensic and biological anthropology lack a formal incorporation of how cranial growth processes impact the adult phenotype and downstream biological profile estimations. Objectives: This research uses an ontogenetic framework to identify when interlandmark distances (ILDs) stabilize during growth to reach adult levels of variation and to evaluate patterns of cranial sexual size dimorphism. Methods: Multivariate adaptive regression splines (MARS) were conducted on standardized cranial ILDs for 595 individuals from the Subadult Virtual Anthropology Database (SVAD) and the Forensic Data Bank (FDB) aged between birth and 25 years. Cross-Validated R-squared (CVRSq) values evaluated ILD variation explained by age while knot placements identified meaningful changes in ILD growth trajectories. Results: Results reveal the ages at which males and females reach craniometric maturity across splanchnocranium, neurocranium, basicranium and cross-regional ILDs. Changes in growth patterns observed here largely align with growth milestones of integrated soft tissue and skeletal structures as well as developmental milestones like puberty. Conclusions: Our findings highlight the variability in growth by sex and cranial region and move forensic anthropologists towards recognizing cranial growth as a mosaic, continuous process with overlap between subadults and adults rather than consistently approaching subadult and adult research separately.
Full article
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both
[...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations.
Full article
by
Marc Bayer, Jaroslava Zajakina, Myriam Schäfer, Kristine Salmina, Felikss Rumnieks, Juris Jansons, Felix Bestvater, Reet Kurg, Jekaterina Erenpreisa and Michael Hausmann
Background: Often, neoadjuvant therapy, which relies on the induction of double-strand breaks (DSBs), is used prior to surgery to shrink tumors by inducing cancer cell apoptosis. However, recent studies have suggested that this treatment may also induce a fluctuating state between senescence and
[...] Read more.
Background: Often, neoadjuvant therapy, which relies on the induction of double-strand breaks (DSBs), is used prior to surgery to shrink tumors by inducing cancer cell apoptosis. However, recent studies have suggested that this treatment may also induce a fluctuating state between senescence and stemness in PA-1 embryonal carcinoma cells, potentially affecting therapeutic outcomes. Thus, the respective epigenetic pathways are up or downregulated over a time period of days. These fluctuations go hand in hand with changes in spatial DNA organization. Methods: By means of Single-Molecule Localization Microscopy in combination with mathematical evaluation tools for pointillist data sets, we investigated the organization of euchromatin and heterochromatin at the nanoscale on the third and fifth day after etoposide treatment. Results: Using fluorescently labeled antibodies against H3K9me3 (heterochromatin tri-methylation sites) and H3K4me3 (euchromatin tri-methylation sites), we found that the induction of DSBs led to the de-condensation of heterochromatin and compaction of euchromatin, with a peak effect on day 3 after the treatment. On day 3, we also observed the co-localization of euchromatin and heterochromatin, which have marks that usually occur in exclusive low-overlapping network-like compartments. The evaluation of the SMLM data using topological tools (persistent homology and persistent imaging) and principal component analysis, as well as the confocal microscopy analysis of H3K9me3- and H3K4me3-stained PA-1 cells, supported the findings that distinct shifts in euchromatin and heterochromatin organization took place in a subpopulation of these cells during the days after the treatment. Furthermore, by means of flow cytometry, it was shown that the rearrangements in chromatin organization coincided with the simultaneous upregulation of the stemness promotors OCT4A and SOX2 and senescence promotors p21Cip1 and p27. Conclusion: Our findings suggest potential applications to improve cancer therapy by inhibiting chromatin remodeling and preventing therapy-induced senescence.
Full article
Some chemical reactors exhibit coupled dynamics with multiple equilibrium points and strong nonlinearities. The accurate modeling of these dynamics is crucial to optimal control and increasing the reactor’s economic performance. While neural networks can effectively handle complex nonlinearities, they sacrifice interpretability. Alternatively, block-oriented
[...] Read more.
Some chemical reactors exhibit coupled dynamics with multiple equilibrium points and strong nonlinearities. The accurate modeling of these dynamics is crucial to optimal control and increasing the reactor’s economic performance. While neural networks can effectively handle complex nonlinearities, they sacrifice interpretability. Alternatively, block-oriented Hammerstein–Wiener models and Koopman operator-based linear predictors combine nonlinear representation with linear dynamics, offering a gray-box identification approach. This paper comprehensively reviews recent advancements in both the Hammerstein–Wiener and Koopman operator methods and benchmarks their accuracy against neural network-based approaches to modeling a large-scale industrial Fluid Catalytic Cracking fractionator. Furthermore, Monte Carlo simulations are employed to validate performance under varying signal-to-noise ratios. The results demonstrate that the Koopman bilinear model significantly outperforms the other methods in terms of accuracy and robustness.
Full article